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Summary 
For evaluation of response signals obtained by rail fastening analysis a new 
method using time and frequency related transformations has been developed. In 
the paper the laboratory measurements and dynamic parameter analyses of flexible 
fastening of Vossloh SKL14 type have been described. The method can also be used 
for designing new rail fastening systems and their parts. 
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1. INTRODUCTION 

The basis for the selection and comparison of new components of rail 
superstructure are also theoretical analysis (simulation) and static and dynamic 
tests carried out in the laboratory and in the field (directly on the railway) [9]. It is 
necessary to mention that theoretical analysis of application of mathematical 
simulation is often based on idealized assumptions. Hence, when the real 
conditions on the railway or tramway superstructure are encountered, the model 
may be inaccurate.  

For testing the railway superstructure construction, different methods and different 
criterions were applied. Dynamic testing [4] often uses the method of exciting the 
structure by mechanical shock. Exciting by shock is useful for the setting up a 
given set of frequencies as the shock, according to the theory, stimulates all 
frequencies, mainly resonant. Mechanical shock is often stimulated by a special 
hammer, which has an incorporated power sensor in radial direction to the railhead.  

The response is measured by accelerometer sensors at different points of the rail 
structure (rail foot, clip plate, clamp, sleeper etc). This method makes it possible to 
record frequency components in the range 1 Hz to 10 kHz. Recorded data are often 
recalculated and presented in the form of the frequency transfer function. This 
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shows important frequency components (mainly resonant) that include information 
about dynamic properties of particular parts of tested structure. 

Often in the experimental investigation of dynamic properties [5] of rail fastening, 
the measurement and calculation of the transfer function is called accelerance 
(inverse function of dynamic weight). It is for that reason that the acceleration 
transducer is the most suitable electromechanical measurement device for the 
measuring of oscillation. Accelerance is defined by the relation 

 ( ) ( )
( )fS
fS

fH
FF

aF
aF =  (1) 

where SaF(f) is cross spectrum of response and entry  signal, SFF is auto-spectrum of 
entry signal. From the relation (1) it can be seen that measured acceleration is 
standardized for power measured during the shock.  

In spite of the advantages, it is not possible to localize the time behavior of 
frequency components included in the signal. Therefore for the evaluation of 
response signals when analyzing the rails fastenings, the authors supplemented the 
methods of the measurements by utilizing progressive processes of signal analysis, 
i.e. by utilizing time frequency transformations.  

One possible procedure to analyze time occurrence of frequency components of 
transfer and non-stationary signals, is the use of the so-called time frequency 
proceedings (transformations). These can be distributed according to two basic 
groups [3]: 

• linear (including mainly Short Time Fourier Transformation, Wavelet 
Transformation etc.) 

• non-linear (including mainly quadratic Cohen Transformations, Affine and 
Hyperbolic Transformation, eventually further  special proceedings) 

2. THEORY OF TIME FREQUENCY ANALYSIS 

Given a time series, x(t), it can readily be seen how the “energy” of the signal is 
distributed in time. By performing a Fourier transform to obtain the spectrum, X 
(ω), it can also be seen how the “energy” of the signal is distributed in frequency. 
For a stationary signal, there is usually no need to go beyond the time or frequency 
domains. However, most real world signals have characteristics that change over 
time, and the individual domains of time and frequency do not provide a means for 
extracting this information. The general goal of this contribution is to demonstrate 
some lesser-known methods for creating functions that represent the energy of the 
signal simultaneously in time and frequency. 



ISSN 1582-3024

http://www.ce.tuiasi.ro/intersections

 Analysis of dynamic parameters of rail fastening by Rihaczek transformation 

Article No. 1, Intersections/Intersecţii, Vol.4, 2007, No.1, “Transp. Infrastr. Engrg” 7 

Transportation 
Infrastructure Engineering

Example of linear time-frequency distributions is the Short Time Fourier 
Transformation. The main idea of the Short Time Fourier Transform (STFT) is to 
split a non-stationary signal into fractions within which stationary assumptions 
apply and to carry out a Fourier transform on each of these fractions. The STFT is 
defined by equation [3, 4] 

 dtetgtxfSTFT tfj ⋅⋅−⋅= ⋅⋅⋅⋅−
∞

∞−

∗∫ πττ 2)]()([),(  (2) 

where ‘*’ denotes the complex conjugate, g is the short time window, x(t) is the 
signal, τ is the time location parameter, f is frequency and t is time. In the two 
dimensional time-frequency joint representation, the vertical stripes of the complex 
valued STFT coefficients STFT(τ, f) correspond to the Fourier spectra of the 
windowed signal with the window shifted to given timesτ. The main disadvantage 
of linear time-frequency transform is that the time frequency resolution is limited 
to the Heisenberg bound. This is due to the imposition of local time window g(t). If 
this window is more resolved in time, the frequency resolution suffers because the 
effective width of its Fourier transform G(f) increases, and vice-versa. 

Quadratic (non-linear) methods present the second fundamental class of time 
frequency distributions. Quadratic methods are based upon estimating an 
instantaneous power (or energy) spectrum using a bilinear operation on the signal 
x(t) itself. The class of all quadratic time-frequency distributions to time shifts and 
frequency-shift is called Cohen’s class. Similarly, the class of all quadratic time-
frequency distributions covariant to time-shift and scales is called the Affine class. 
The intersection of these two classes contains time-frequency distributions, like the 
Wigner-Ville distribution, that are covariant to all operators. 

Cohen [1] generalized the definition of the time frequency distributions in such a 
way as to include a wide variety of different distributions. These different 
distributions can be represented in several ways. Cohen’s class definition like the 
Fourier Transformation, with respect toτ, of the generalized local correlation 
function is most common. With a two-dimensional kernel, the bilinear time 
frequency distribution of the Cohen´s class is defined according to equation [2]: 

( ) ( ) τθτττθψθπτπθπ ddtdtxtxeftC tjfjtj
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22
, , *222 (3) 

where x is the signal, t (t’) is the time, τ is  the time location parameter, ω  is 
angular frequency, θ is shift frequency parameter, ψ(θ, τ) is called the kernel of the 
time frequency distribution. A distribution Cx (t, f) from Cohen’s class can be 
interpreted as the two-dimensional Fourier Transformation of a weighted version of 
the ambiguity function of the signal 
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where Ax(θ, τ) is the ambiguity function of the signal x(t), given by equation: 
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We note that all integrals run from -∞ to ∞. The weighted function ψ(θ, τ) is called 
the kernel. It determines the specific properties of the distribution. The product 
Ax(θ, τ)⋅ψ(θ, τ) is known as the characteristic function.  

Since the ambiguity function is a bilinear function of the signal, it exhibits cross 
components, which, if allowed to pass into time frequency distribution, can reduce 
auto-component resolution, obscure the true signal feature, and make interpretation 
of the distribution difficult. Therefore, the kernel is often selected to weight the 
ambiguity function such that the auto-components, which are centered at the origin 
of the (θ, τ) ambiguity plane, are passed, while the cross-components, which are 
located away from origin, are suppressed. This means that the suppression of cross-
components might be understood as the frequency response of a two-dimensional 
low-pass filter.  

When a low pass kernel is employed, there is a trade-off between cross-
components suppression and auto-component concentration. Generally, as the 
band-pass region of the kernel is made smaller, the amount of cross-component 
suppression increases, but at the expense of auto-component concentration.  
There is definition of the kernel for Rihaczek Transformation in equation 6 

 ( ) 2,
τθ

τθψ
⋅⋅

=
j

e . (6) 

Equation 4 can also be rewritten into the following form [5] 
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where  
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is the two-dimensional Fourier transform of the kernel ψ  and WVT presents 
Wigner-Ville transform. Cohen’s class has a simple interpretation as a smoothed 
Wigner-Ville distribution [5]. 
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3. ANALYSIS OF DYNAMIC PARAMETERS 

The model used for laboratory measurements and analysis of dynamic parameters 
of a sample of rail fastening is presented below. The rail grid model was 
constructed of concrete sleepers B 91, on which there were fastened rails of 
construction shape UIC 60 by flexible fastening Vossloh SKL14.   

For the testing of the dynamic properties of the sample, the method of measuring 
the response to mechanical shock was used. Mechanical shock was stimulated by a 
special hammer in the radial direction on the railhead. A part of this hammer is a 
force detector.  

The response was measured by accelerometers at different points of the rail 
structure, on the rail foot and sleepers (10 cm from fastening). Figure 1 show the 
location of detectors. From the response time signals frequency transfer functions 
(accelerance) were calculated in order to obtain standardized responses [5]. 

 
Figure 1 General view of the working place 

Signals from measurements on the rail and sleepers were used for the presentation 
of particular analyses in this contribution. The measuring system consisted of a 
Brüel and Kjaer PULSE modular analyses for recording the vibration parameters 
together with B&k cubic acceleration detector and a B&k shock stimulation 
hammer (Figure 1).  
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The accelerometers were fastened to the measured construction by means of bee 
wax. The results were recorded digitally.  

The analysis of the response to mechanical shock was evaluated by means of the 
following methods and parameters [5]: 

• Time records of the duration of impulse response function (in principle 
standardized acceleration value) 

• Frequency analysis with the use of frequency response function (according to 
equation 1) 

• Time-frequency method of spectral analysis (for the transfer from time to 
time- frequency domain, the algorithm of Short Time Fourier Transformation 
and Rihaczek Transformation was used) 

 

Time histories of the impulse response function, recorded by accelerometers, 
located on the rail foot, are depicted on the upper graph of Figure 2. The maximum 
positive value of acceleration of 300 m⋅s-2 is reached 1 ms from the observed 
beginning. The maximum negative value of acceleration of -300 m⋅s-2 is reached 2 
ms from the beginning. Damping of the signal from the acceleration 300 m⋅s-2 to 
the acceleration lower than 30 m⋅s-2 took 15 ms.   

In the left graph of Figure 2 is depicted the amplitude spectrum of this frequency 
response function calculated according to equation 1. In the graph, six important 
frequencies (0.2 kHz, 0.7 kHz, 1.9 kHz, 2.4 kHz, 3.3 kHz and 3.7 kHz), are visible. 
The important values are taken as those which have the damping up to 20 dB from 
the maximum value of amplitude spectrum.  

Time frequency amplitude spectrum estimated by application of Short Time 
Fourier Transformation to the impulse response function is depicted in the middle 
graph in Figure 2. As shown on this graph, the time history of important frequency 
components essentially differ.  

Frequency component 1.9 kHz reaches the highest values for a relatively long time 
(compared to other frequency components). It appears in the signal nearly in its full 
history, i.e. approximately 40 ms by damping up to 40 dB. The second most 
important component is the frequency 3.3 kHz. This appears in signal up to the 
time of 20 ms from the above. Other notable frequencies 2.4 kHz and 3.7 kHz are 
in the signal for the time of 5 ms up to 15 ms.  

Similar conclusions are visible from the middle graph of Figure 3, which present 
the analysis of impulse response function on the rail foot by the use of Rihaczek 
Transformation. This transform belong to the category of non-linear time 
frequency proceedings from the Cohen class. 
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Figure 2 Accelerometric detector located on the rail foot, time frequency analysis by  

Short Time Fourier Transformation 

 

Figure 3 Accelerometric detector located on the rail foot, time frequency analysis by 
Rihaczek Transformation 
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Signals (impulse response function) taken by a second transducer, located on the 
concrete sleeper, have different character. From the time record (see upper graph of 
Figure 4) it is apparent that the maximum impulse response function amplitude 
acquires lower frequency values as a result of the influence of the transformation of 
the signal through the fastening of rail, clip plate, sleeper to the accelerometer and 
reaches values of 50 m⋅s-2. These values were reached 2 ms from the first rise time 
from “amplitude pack". Values of acceleration are considerably lower than those 
by the transducer located on the rail foot which was located nearer to the source of 
mechanical impulse. 

In the left graph of Figure 4 is depicted the amplitude spectrum of frequency 
response function. The form of spectrum considerably differs from the 
characteristics measured by the first transducer located on the rail foot. The most 
important components appear in the lower frequencies from the transducer located 
on the rail foot: in the interval of 0.2 kHz up to 2 kHz, there are also more in 
number. 

Similar conclusions are given by the middle graph of Figure 4 which presents the 
time frequency amplitude spectrum estimated by the application of the Short Time 
Fourier Transformation. From this graph it can be seen that time occurrence of 
significant components included in signal is considerably shorter (the longest is 
approx. 20 ms from the imaginary beginning) than it is from the signal from 
transducer located on the rail foot. 

 
Figure 4 Accelerometric detector located on concrete sleeper, time frequency analysis by 

Short Time Fourier Transformation 
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Figure 5 Accelerometric detector located on concrete sleeper, time frequency analysis by 

Rihaczek Transformation 

Similar conclusions apply to the middle graphs of Figure 5 which present the 
analysis of signals from transducers located on the sleeper by the use of Rihaczek 
Transformation. The significant frequency components which are calculated by the 
Rihaczek Transformation (Figure 6) are frequencies of 0.2 kHz, 0.7 kHz, 1.9 kHz, 
2.7 kHz, 3.2 kHz, 3.4 kHz and 3.7 kHz. The most significant spectrum component 
is the frequency component 0.2 kHz which appears within this spectrum for a 
relatively long time in relation to the activity of other components. 

On the whole, it is possible to state from the middle graphs in Figure 2 to Figure 5 
that in contrast to linear methods whose ability to resolve the frequency elements in 
the time region is limited by certain window functions, quadratic methods can 
achieve this objective. Higher distinguishing makes more favorable localization of 
significant frequency components in time possible.  

The quality of time and frequency achieved by measuring the signal response to 
mechanical shock and applying by these transformations is a good choice. 

4. CONCLUSIONS 

Based on measurements and analyses, it is possible to state that the methods 
presented above are very good for the measurement of dynamic parameters of rail 
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fastenings. The use of these methods enables the testing of new types of rail 
fastenings and different types of rail washers under rails and the opportunity to 
optimize the geometric location of damping elements on rail etc. From the 
mathematical means of signal analysis it is possible to utilize both Short Time 
Fourier Transformation and Rihaczek Transformation for time-localization of the 
occurrence of frequency elements of stationary and non-stationary signals.  

Based on the experience acquired, it is of great advantage for the analysis of real 
signals to utilize the properly selected time and frequency sections. This procedure 
seems to be more suitable than the spatial arrangement. It is possible for more 
precise localization of time records to separate significant frequency components or 
to depict all important frequencies. Analysis of signals, acquired by measurement 
and analysis of response to mechanical shock gives new, more detailed insights to 
transition characteristics of railway and tramway structures. Hence, it grants 
valuable knowledge for a thorough analysis of these constructions, which can be 
important for consequent optimization of construction and operational conditions. 
Also the fact that by time frequency proceedings analysis of dynamic load of 
railway and tramway constructions provides real data for consequent formulation 
of mathematical models. From this point of view, both linear and non-linear time 
frequency transformations are applicable. These methods give a fast and accurate 
localization of frequency components included in the measured signal. It is 
possible to apply the described method successfully not only on samples of several 
constructions of railway and tramway superstructure but also directly in the field 
on real tracks. 
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