
ISSN 1582-3024

http://www.ce.tuiasi.ro/intersections

 

Article No. 3, Intersections/Intersecţii, Vol.4, 2007, No.1, “Transp. Infrastr. Engrg” 25 

Transportation 
Infrastructure Engineering

Discrete model for the stability of continuous welded rail 

Adam Dósa, Valentin-Vasile Ungureanu 
Department of civil engineering, “TRANSILVANIA” UNIVERSITY, Braşov, Romania 

Summary 
In this paper a discrete model is developed for the buckling analysis of continuous 
welded rail subjected to temperature load. The model is based on a nonlinear 
analysis in total lagrangean formulation. The structure consists of beam elements 
and lateral, longitudinal and torsional spring elements. The source of nonlinearity 
is due to the geometric nonlinearity of the rail high axial forces and also to the 
nonlinearity of material type for the lateral and longitudinal resistance of the 
ballast and the torsional resistance of the fasteners. The use of a displacement 
control algorithm leads the analysis beyond the critical point and permits a more 
realistic computation of the structural safety.  The track model is encoded into a 
special purpose program which allows a parametric study of the influence of 
vehicle loading, the stiffness properties of the structure and of the geometric 
imperfections on the track stability. 

The validity of the present model is verified through a series of comparative 
analyses with other author’s results.     

 

KEYWORDS: Continuous welded rail, Non-linear stability analysis, Temperature 
loading, Structural safety. 

1. INTRODUCTION 

The first computational models of the buckling of the continuous welded rail 
(CWR) were developed at the beginning of the 1930 years. These models can take 
into account the main parameters which control the stability of CWR like the 
horizontal and vertical stiffness of the rail, the longitudinal and transversal 
resistance of the rail, the torsional resistance of the fasteners, the stresses induced 
by the vehicle and temperature loading, the geometry and the misalignment of the 
rail. In the SCFJ model presented in this paper the structure consists of beam 
elements and lateral, longitudinal and torsional spring elements. The beam 
elements are modeling the rail and have geometric nonlinear characteristics due to 
high compressive thermal stresses. The spring elements are describing the material 
nonlinear behavior of the ballast and the fasteners.  
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2. DEVELOPMENT OF THE TRACK MODEL 

2.1. The longitudinal ballast behavior 
In the SCFJ model the longitudinal resistance of the ballast is introduced by spring 
elements having the, linear or bilinear displacement-force curves given in figure 1. 
In the case of vehicle loading, the bilinear curve is corrected [6] by the equation (1) 
taking into account the vertical force Q on each sleeper.  
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In the above equation vU  is the reference value of the longitudinal resistance 

(without vehicle loading), c
vU  is the corrected value of this resistance and Lφ  is the 

angle of the longitudinal friction between the sleeper and the ballast. 

 
Figure 1. Longitudinal resistance versus longitudinal displacement of the ballast 

2.2. The transversal ballast behavior 
The transversal resistance of the ballast is introduced by spring elements having the 
displacement-force curves given in figure 2. In both cases the elasto-plastic model 
includes softening. This kind of ballast behavior has been measured for 
consolidated ballast. In the case of vehicle loading, the bilinear curve is corrected 
[6] by the equation (1) taking into account the vertical force Q on each sleeper 
using equations (2), (3) or (4).  
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In the above equations vV  is the reference value of the peak transversal resistance 
(without vehicle loading), c

vV  is the corrected value of this resistance, Tφ  is the 
angle of the transversal friction between the sleeper and the ballast, rV  is the 
reference value of the residual transversal resistance (without vehicle loading), and 

c
rV  is the corrected value of this resistance. In the case of exponential softening the 

difference c
r

c
v VV − is half at the middle of c

r
c
v vv −  interval. 

 

Figure 2. Transversal resistance versus transversal displacement of the ballast 

2.3. The torsional stiffness of the fasteners 
The resistance of the fasteners is introduced by torsional springs having the linear 
or tri-linear behavior shown in figure 3. In the case of loaded rail this behavior also 
can be corrected taking into account the vertical force acting on each sleeper. 

 
Figure 3. The torsional stiffness of the fasteners 
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2.4. The geometrical and physical characteristics of the rail 
The rail is modeled by beam elements having area of the cross section A, second 
order moment about the vertical and horizontal axes Iz and Iy respectively. The 
Young modulus and the thermal expansion coefficient of the material are E and 
respectively α. In the model the misalignment of the rail can be described by two 
types of curves: a complete or a half cosine wave having the total length λ and the 
amplitude δ (figure 6). The length of the model is an input of the program. At the 
end of the model special infinite boundary elements are introduced -equivalent 
with the theoretical infinite rail [6]. This elements lead to the reduction of the 
length of the model and hence the computational effort. Further reduction can be 
obtained by using the symmetric half structure. 

3. THE NUMERICAL ALGORITHM 

Since in a simplified manner, the horizontal and vertical behavior are considered 
decoupled, the numerical algorithm has two phases. 

3.1. The computational model for vertical loadings 
This model is linear elastic consisting of a beam on elastic springs. The nodes of 
the structure are considered at the sleepers. Each node has two degrees of freedom: 
the vertical translation w and the rotation θy. The system of equations of 
equilibrium is:  

 FKa = . (5) 

where: 

K is the stiffness matrix of the structure and results by assembling the stiffness 
matrices k of the beams and the vertical stiffness of the fasteners.  

a is the displacement vector of the nodes of the structure. 

F is the vector of forces at the nodes of the structure, which (in this case) results by 
assembling the vectors  f0  of the forces on the beams. 

The stiffness matrix k(4x4) of a beam is given by the equation:  

 Error! Objects cannot be created from editing field codes.. (6) 

Here B(2 x 4) is a transformation vector, which links the vector of displacements of 
the beam and the reduced vector of displacements of the beam. The reduced vector 
of displacements does not contain the rigid body displacements. 



ISSN 1582-3024

http://www.ce.tuiasi.ro/intersections

 Discrete model for the stability of continuous welded rail 

Article No. 3, Intersections/Intersecţii, Vol.4, 2007, No.1, “Transp. Infrastr. Engrg” 29 

Transportation 
Infrastructure Engineering

 ( )Tyiiyiield
yi

d
yid

el ww
LL
LL

11
1 1101

0111
++

+








−
−

=⋅=












= θθ
θ
θ

aBa  (7) 

 
Figure 4. The displacements of the beam in the vertical plane 

kd
(2 x 2) is the reduced stiffness matrix of the beam. 
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If the beam is loaded, the vector f0 of equivalent forces in the nodes is given by 
equations (9).  

 Error! Objects cannot be created from editing field codes. (9)  

 
Figure 5. Equivalent nodal forces of the beam 

The stiffness matrices and the load vectors of the beams are assembled by the 
relation (10). 

 0fFFkKK +=+= indindind,indind,ind , . (10) 

Here ind is the vector of the indices of the displacements of the current beam.  

The stiffness of the sleepers is assembled with the help of the equation (11). 
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 LRzjnd,jndjnd,jnd += KK  (11) 

In the above equation jnd is the set of indices of vertical displacements of the nodes 
jnd=1, 3, ..., 2nnd-1. The constraints of the structure are introduced by setting to 
zero the displacements of the supports. The free displacements of the nodes result 
by solving the system of linear equations: 

 idid,idid )( FKa 1−= . (12) 

In equation (12) id is the set of the free displacements of the structure. 

Using the vertical displacements, the vertical force on each sleeper can be 
computed by the equation (13) 

 sleeperz GLwRQ +−= . (13) 

The transversal, longitudinal and torsional resistances are corrected taking into 
account the forces Q on each sleeper using equations (1) to (4). 

3.2. The computational model in the horizontal plane 
The model is a straight or curved beam on elastic supports with misalignments 
(figure 6). The nodes of the structure are considered at the sleepers. At each node 
are introduced longitudinal, transversal and rotational spring elements which are 
modeling the sleepers. The infinite boundary elements at the ends of the model 
have equivalent characteristics (Young modulus and thermal expansion coefficient) 
in order to replace the theoretical infinite rail [6]. The loading of the model is an 
increase of the temperature in the rail. The characteristics of the beams and of the 
springs correspond to the two rails of the track panel. A node has three degrees of 
freedom: two linear displacements in the horizontal plane, u and v and the rotation 
θz around the vertical axis. In the analysis of the structure the goal is to obtain the 
displacement-temperature curve. The problem is solved by a displacement control 
based incremental process. The behavior of the system is determined as a sequence 
of increments of state parameters (forces and displacements). In the current 
increment j characterized by the small control displacement δvcj, the nonlinear 
behavior of the system can be approximated by a linear relation between the 
successive increments of the state parameters: 

 jjjjjj , aKFaaa δδδ =+=+1 . (14) 

In the above equation aj is the displacement vector in the current configuration, δaj 
is the increment of the displacements, δFj is the incremental load vector and Kj is 
the incremental (tangent) stiffness matrix of the structure.  
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Figure 6. The model for horizontal displacements 

By using equations (14), the following incremental scheme results: 

 jjjjjj ,)( aaaFKa δδδ +== +
−

1
1 . (15) 

In this paper an improved scheme is used, known as Heun’s or midpoint rule:  
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The incremental load vector δFj is not computed. The incremental displacement δaj 
is the result of a yet unknown increment of the temperature produced by a known 
increment δvcj of the control displacement. For simplicity, in the next equations 
indices j of the current configuration are dropped. The displacement control 
consists of loading the system with displacement increments δvc in a specific node. 
As a rule in this paper: the control displacement is taken as the maximum 
transversal displacement of the node on the symmetry axe of the structure. The 
phases of the computation are the following:  

- It is adopted a base system with the control displacement fixed at zero.  
- This base system is loaded with two load cases: 
i) Load 1 is a temperature increase δT =1, which produces displacements δa(1) at 
the free nodes and reaction R(1) in the artificial support.  
ii) Load 2 is a displacement δvc of the artificial support, which produces 
displacements δa(2) at the free nodes and reaction R(2) in the artificial support. 
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Figure 7. The determination of the temperature and displacement increments  

The base system and the initial system are identical if the total reaction in the 
artificial support is zero. R= R(1)δT + R(2)=0. This equation yields the unknown 
variation δT of temperature and the incremental displacements δa of the free nodes. 

 )()( R/RT 12−=δ , (17) 

 )()( T 21 aaa δδδδ +⋅= . (18) 

The tangent stiffness matrix Kj  in the j increment depends on the parameters of the 
system in the current step and results by assembling the stiffness matrices kt(6 x 6) of 
the beams and of the springs which model the sleepers.  
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and Nj is the axial force in the beam in the j-th incremental step: Nj=EA ∆ Lj/ Lj, 
,LLL jj 0−=∆   200

10 )(L ii xx −= + , 2
1 )(L j

i
j
ij xx −= + . 

 
Figure 8. The axial deformation of the beam 

Matrices dk  and d
Gk  are the material and geometric stiffness matrices respectively. 

They are expressed with the reduced set of displacements which produce 
deformations and they are not containing the rigid body displacements of the beam. 
This reduced form of the stiffness matrices needs less computational effort and 
speeds up significantly the computation. Equation (19) introduces the non-linear 
effect of the axial force Nj. The complete tangent stiffness matrix in the updated 
lagrangean formulation used here has two more terms corresponding to the 
variation of the length of the beam in bending and to the effect of the shear force 
[1], [2], [3], [4], [5].  Since in the current cases the structure is divided in a 
sufficient number of beams, the errors are very small, when neglecting these two 
terms. In a study using the complete tangent stiffness matrix and equation (19) the 
differences between the resulting limit temperatures were only at the fifth digit. 

4. NUMERICAL EXPERIMENTS 

The validity of the present model is verified through a series of comparative 
analyses with other author’s results. The numerical example presented here 
corresponds with one given in [1]. The track length is L=24.359/2 m corresponding 
to 21 sleepers on the symmetric half of the structure. The curvature radius is R=400 
m. The horizontal misalignment is characterized by a half wave cosine with a 
length λ=9.144 m and an amplitude δ=0.0381 m. The rails have the characteristics 
of two AREA 136 rails. The vertical stiffness of the ballast elements is Rz=68900 
kN/m per meter of track. The longitudinal stiffness is Rx=1378 kN/m per meter of 
track. The torsional stiffness of the fasteners is 111.250 kNm/rad per meter of 
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track. Laterally the ballast is modeled by the tri-linear constitutive behavior given 
in figure 2. The reference values of the lateral peak resistance and residual 
resistance are Vv=17.508 and Vr=9.630 kN per meter of track. These values are 
corrected with the vertical forces resulting from the vehicle loading. The lateral 
displacement at the peak value is  vv=0.00635 m and at the limit value is vr=0.0381 
m. The model is vertically loaded by a vehicle with two bogies represented by four 
vertical loads of 293 kN each. The centre spacing between the bogies is 12.85 m. 
The spacing between the axles in a bogie is 1.78 m. The centre of the misalignment 
is located in the middle between the bogies. The track is loaded by a temperature 
increase from zero to a maximal value corresponding to the buckling of the rail. 
The lateral displacement of the middle node versus the resulting temperature 
increase is shown in figure 9.  
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Figure 9. Lateral displacement versus temperature increase 

The curve in the figure 9 is characterized by two points: Tmax - the maximum 
increase of temperature for which the buckling certainly starts, and Tmin - the 
minimum increase of temperature which occurs in the post-buckling domain. The 
values computed by the SCFJ model - Tmax=49.5 0C and Tmin=33.3 0C - are in a 
good agreement with those given in [1]. 
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