
ISSN 1582-3024

http://www.intersections.ro

 

Article No.5, Intersections/Intersecţii, Vol.4, 2007, No.2, “Structural Engineering” 75 

Structural Engineering

Numerical code for seismic analysis of structures incorporating 
energy dissipating devices 

Pablo Mata1, Sergio Oller2, Alex H. Barbat3 and Ruben Boroschek4 
1Technical University of Catalonia.Edificio C1, Campus Norte UPC. Gran Capitán s/n. Barcelona 

08034, Spain, Email: pmata@cimne.upc.edu, 
2Technical University of Catalonia.Edificio C1, Campus Norte UPC. Gran Capitán s/n. Barcelona 

08034, Spain, Email: sergio.oller@upc.edu 
3Technical University of Catalonia.Edificio C1, Campus Norte UPC. Gran Capitán s/n. Barcelona 

08034, Spain, Email:  alex.barbat@upc.edu 
4University of Chile, Civil Engineering Department., Blanco Encalada 2002. Santiago, Chile.   

Email: rborosch@ing.uchile.cl 

Summary 
The nonlinear dynamic response of civil structures with energy dissipating devices 
is studied. The structure is modeled using the Vu Quoc–Simo formulation for 
beams in finite deformation. The effects of shear stresses are considered, allowing 
rotating the local system of each beam independently of the position of the beam 
axis. The material nonlinearity is treated at material point level with an 
appropriated constitutive law for concrete and fiber behavior for steel 
reinforcements and stirrups. The simple mixing theory is used to treat the resulting 
composite. The equation of motion of the system as well as the conservation laws 
are expressed in terms of sectional forces and generalized strains and the dynamic 
problem is solved in the finite element framework. A specific kind of finite element 
is proposed for modeling the energy dissipating devices. Several tests were 
conducted to validate the ability of the model to reproduce the nonlinear response 
of concrete structures subjected to earthquake loading. 

1. INTRODUCTION 

In the traditional approach to earthquake engineering design, the computations are 
carried out on the basis of linear elastic static analysis. The nonlinear behavior and 
energy dissipation can be accounted for in a trivial manner by a force-based 
approach, analyzing the elastic response spectra of a single degree of freedom 
system, SDF, and the so called reduction factor method for introducing the material 
ductility. 

A more rational concept, the displacement based approach, turns toward the design 
based on the critical limit states of the elements [Davenne et.al. 2003]. Both design 
procedures are based on the study of a SDF system or simplified substitute 
structures, which are not capable to account for the load redistribution inside the 
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structures due to local non-linearity. This is one of the major drawbacks preventing 
a realistic description of the global and local behavior of the structure up to the 
failure [Davenne et.al. 2003]. By other hand, additional improvements can be done 
if energetic concepts are taken into account. The passive control of structures takes 
advantages of the possibility of dissipate energy in specific devices alleviating the 
stresses in the main structural elements and controlling the lateral displacements of 
the whole structure.  

One choice to perform realistic analysis of structures equipped with energy 
dissipating devices for seismic loading is employing nonlinear time history analysis 
assuming physical descriptions for the materials and applying transient loadings on 
the structure in terms of natural or simulated ground motions. The model employed 
for the structure should be able to simulate the changes of configuration of the 
structure during the dynamic action, especially for the case of flexible structural 
behavior. Additionally, appropriated constitutive laws have to be provided for the 
materials of the elements and for dissipating devices. 

In this work the latter is achieved modeling the structure by mean of employing the 
Simo-Vu Quoc formulation for beams and rods capable of undergoing large strains 
and displacements [Simo et.al. 1985]. Each beam section is meshed into a grid of 
cells, each of them corresponding to a fiber directed along the beam axis. The 
material associated with a fiber can be composed by several components, 
employing the simple mixing theory for the treatment of the resulting composite 
[Oller, et.al. 1997]. The incorporation of energy dissipating devices is obtained 
developing a special rod element with only one integration point. Appropriated 
one-dimensional constitutive laws or strain–stress relationships are provided for the 
element. Numerical examples are studied to validate the ability of the model for 
simulating the dynamic response of structures subjected to seismic loading. 

2. KINEMATIC OF BEAMS IN FINITE STRAIN 

Nonlinear analysis of three-dimensional beam–like structural systems subjected to 
very large displacements is a problem frequently encountered in earthquake 
engineering. The 3D beam formulation employed here makes use of the 
equilibrium equations in terms of stress resultants in order to deduce on the energy 
conjugate strain measure through application of the virtual work principle. The 
Newmark method is employed for integrating the equations of motion in the 
dynamic linearized version [Simo et.al. 1985, 1986; Ibrahimbegovic, 1995]. 

 

2.1 Kinematics’ Description 
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A typical cross section of the beam will be associated with a orthonormal basis 
vector, { } 1,2,3

( , )i i
t S t

=  of a moving frame attached to its centroid, where [0, ]S L R∈ ⊂  
denotes the curvilinear coordinate along the line of centroids of the undeformed 
beam, t R∈  is a time parameter. The 3 ( )t S  component remains normal to the 
section all time. The fixed (so called material description) reference axis of the 
same section is denoted by { } 1,2,3

( ,0)i i
E S

=  so that { } 1,2,3
( ,0)i i

t S
= { } 1,3( ) [0, ]I IE S S L

=
≡ ∀ ∈ . The 

fixed spatial basis is denoted by { } 1,2,3
( ,0)i i

e S
= . See figure 1. The orientation of the 

moving frame { } 1,2,3
( , )i i

t S t
=  along [0, ]S L∈ , and through time t R∈  is specified by an 

orthogonal transformation ( , ) ( , )iJ i JS t S t e EΛ = Λ ⊗  such that 
( , ) ( , ) ( , )I I iJ it S t S t E S t e= Λ = Λ . The position 3

0x R∈  of the centroid of the cross 
section is defined by the map: 0 0 0 ( , )i ix S t eφ φ= = . Here ( , ) (3)S t SOΛ ∈  the special 
orthogonal (Lie) group having the following property: 1tΛΛ = . The derivatives of 
the orthogonal transformation are summarized in the following formulas [Simo 
et.al. 1985, 1986]: 

Derivatives of the moving frame  

Spatial Material  

( , ) ( , ) ( , )S t S t S t
S

∂Λ
= Ω Λ

∂
; ( , ) ( , ) ( , )S t W S t S t
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∂

( , ) ( , ) ( , )S t S t K S t
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∂
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⎢ ⎥−⎣ ⎦

 
(2)

1 1 2 2 3 3 1 1 2 2 3 3e e e k t k t k tω ω ω ω= + + = + +  
1 1 2 2 3 3k k E k E k E= + +  (3)

1 1 2 2 3 3 1 1 2 2 3 3w w e w e w e w t w t w t= + + = + +  
1 1 2 2 3 3w w E w E w E= + +  (4)

 

where ( , ), ( , ), ( , ), ( , )S t W S t K S t W S tΩ  are the spatial and material representation of the 
curvature tensors and spins of the cross section respectively. Note that 0tK K+ = , 

0tΩ + Ω = . 
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Figure 1: Kinematics of beams in finite strain for fiber sections. 

2.2 Stress Resultant and Couples 
Denoting by I IP T E= ⊗  the non symmetric first Piola–Kirchhoff stress tensor, the 
stress resultant n and the spatial stress couple m over a cross section 2RΓ ⊂  in the 
current configuration, are defined according with the equation (5) as:   

 
3 0 3,             ( ( , ))n T d m x S t T dφ

Γ Γ
= Γ = − × Γ∫ ∫  (5) 

The material version of the stress resultants and couples are obtained pulling back 
n, m to the reference configuration by mean of Λ  [Simo et.al. 1985]. Appropriated 
strain measurements conjugated to the corresponding stress resultant and couples 
are obtained trough the stress power equivalence [Simo et.al. 1986], equation (6).     

 
[0, ] [0, ] [0, ]

: [ ] [ ]
L L L

P Fd dS n m dS N M dSγ ω κ
∇ ∇

Γ×
Γ = ⋅ + ⋅ = ⋅Γ + ⋅∫ ∫ ∫& & &  (6) 

where F& is the time derivative of the deformation gradient and a superimposed dot 
denotes time differentiation. Here, ( ) ( )( ) ( )wt

∇
∂• = • − × •∂  denotes the co-rotated rate, 

that is, the rate measured by an observer attached to the moving frame. The 
corresponding strain measurements are given by the equation (7). 

 0 0
3 3

( , ) ( , );    ;      k=t tS t S tt Et t
φ φγ ω∂ ∂= − Γ = Λ − Λ∂ ∂

 (7) 

2.3 Weak Form: Inertia Operator 
The system of partial differential equations to be solved consists of the balance 
laws and constitutive equations expressed in local form. Considering any arbitrary 
admissible variation 0( ) ( ( ), ( ))S S Sη η ϑ=  of the spatial configuration of the rod ( , )ϕ Λ , 
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and multiplying them by the local form of the balance laws, after several 
mathematical procedures, it is possible to obtain the weak form of the equilibrium 
equations (for a detailed description consult Simo et.al. 1986, 1988):  

 { }0 0[0, ]
( , ) : [ ( )] ( , ) 0dyn L

G A I w w I w dS Gρ ρ ρϑ η ϕ η ϑ ϑ η= ⋅ + + × ⋅ + ≡∫ && &  (8)  

where 

   0 0
[0, ] [0, ]

( , ) : [ ] ( ) 0t t

L L
G N M dS n m dS

S S S
η φ ϑϑ η ϑ η ϑ

∂ ∂ ∂⎧ ⎫= ⋅Λ − × + ⋅Λ − ⋅ + ⋅ ≡⎨ ⎬∂ ∂ ∂⎩ ⎭∫ ∫ % %  (9) 

and Aρ and Iρ are the sectional density of area and Inertia dyadic, respectively. 

2.4 Time Integration 
The Newmark’s method is employed to integrate the linearized system obtained 
from the weak form. The novelty of the proposed approach lies in the treatment of 
the rotational part which relies crucially on the use of the discrete counterpart of 
the exponential map in the special group SO(3). The basic problem concerning the 
discrete time stepping update is that given a configuration of displacements and 
rotation tensor : ( , )n n ndϕ = Λ , linear and angular velocities and accelerations, 
( , )n nv w , ( , )n na α  in the time step n obtain the updated configuration in the time step 
n+1. The algorithm employed is summarized in the equations (10), (11) and (12) 
for the material description of the dynamic variables, Δt is the length of the time 
step. It is interesting to note that the updating procedure for the rotational part of 
the dynamic variables have to be carried out in the material description due to the 
fact that this configuration is time independent and the base point on the rotational 
manifold stays fixed [Makinen, 2001]. 

Implicit time stepping algorithm, (material description)  

Translation Rotation  

1n n nd d u+ = +  
1 exp[ ] exp[ ]n n n n nθ+Λ = Λ Θ ≡ Λ  (10)

2
1( ) ( ) [(0.5 ) ]n n n nu t v t a aβ β += Δ + Δ − +  2

1( ) ( ) [(0.5 ) ]n n n nt W t A Aβ β +Θ = Δ + Δ − + (11)

1 1[(1 ) ]n n n nv v t a aγ γ+ += + Δ − + 1 1[(1 ) ]n n n nW W t A Aγ γ+ += + Δ − +  (12)

Working on the linearized form of the equation (9) and employing standard 
techniques of the finite element method, is possible to obtain the discrete version of 
the system of equation [Simo et al, 1988]: 

 ( ) ( ) ( )
 1 1 1 , 1

, 1

[ ( ) ( , ) ] 0
N

i i i i
dyn n I I n IJ n n J n

I J

LG P Kη ϕ ϕ ϕ+ + + +
=

= ⋅ + Λ Δ =∑  (13) 
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 ( ) ( ) ( ) ( ) ( )
1 1 1 1 1( , ) : ( , ) ( ) ( ) ( )i i i i i

IJ n n IJ n n IJ n IJ n IJ nK M S G Lϕ ϕ+ + + + +Λ = Λ Λ + + Λ + Λ  (14)  

where PI and KIJ are the vector of residual forces and the stiffness matrix 
respectively. The matrix KIJ have contributions from the inertia, material and 
geometric terms MIJ, SIJ and (GIJ, LIJ) respectively. A step-by-step iterative 
Newton-Rapson scheme with a predictor–corrector method is employed to obtain 
the dynamic response of the system. 

3. MULTIFIBERS BEAM ELEMENTS 

The cross section of the beam is divided into an orthogonal non–homogeneous grid 
of cells as it is shown in Figure 2. This avoid the formulation of constitutive laws 
using sectional forces and displacements or moments and curvatures, which is the 
traditional way to solve the problem but valid only in certain particular cases [Oller 
and Barbat, 2006]. The sectional forces are decomposed fiber by fiber, in stress 
tensor which are corrected according with the constitutive laws given for the 
materials of the fiber and using the simple mixing theory to treat the resulting 
composite [Car, Oller et.al. 2000]. The corrected sectional forces and moments are 
then obtained by integration over the section area. The obtained sectional forces 
and moments are then used to compute the residual forces, in order to iterate for 
equilibrium if necessary (see Figure 2). 

 
Figure 2: Iterative process at Integration point level in each section. 

3.1 Constitutive Laws 
In this work the concrete behavior is simulated employing a damage model based 
on the Kachanov theory for degrading materials. The model can take into account 
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different properties for tension or compression. The steel reinforcements and 
stirrups are modeled employing elastic–plastic fiber behavior. Both models are 
thermodynamically sustainable avoiding the representation of the behavior of the 
materials in an approximated form based mainly on experimental studies. Strain 
localization is expected to occur in some members and therefore, a regularization 
of the dissipated energy is carried out at constitutive level to obtain objectivity in 
the response of the whole structure [Hanganu et.al. 2002]. 

3.1.1 Damage constitutive model for concrete 

The damage model has a rigorous but relatively simple formulation strictly based 
on thermodynamics [Simo and Ju, 1987]. The model is formulated in the material 
configuration with no temperature time variations. The free energy presents the 
following form:  

 
0 0 0

0 0

1 1( , ) (1 ) ( ) (1 )( ) (1 )( )
2 2

T Td d d d Cψ ε ψ ε ε σ ε ε
ρ ρ

= − = − = −  (15) 

where ε  is the strain tensor, (0 1)d d≤ ≤  is the internal damage variable, 0ρ  is the 
density in the material configuration, 0C  is the elastic constitutive tensor in the 
initial undamaged state. The fulfillment of the Clasius Planck inequality provide 
the constitutive law and dissipation, mΞ& , according to equation (16). 

 
0 m(1 ) ;                   0d C d

d
σ ε ∂Ψ

= − Ξ = − ≥
∂

&&  (16) 

The damage yield criterion is defined in function of the free energy of the 
undamaged material as: 0 0 0( ) 2 1F K σ ρ= Ψ − , where 0( )K σ is a function of the principal 
stresses and takes into account the ability of the model to consider different traction 
and compression properties [Barbat, et.al. 1997]. See Figure 3. Finally, the tangent 
constitutive tensor is given [Oller et.al. 1997] by  

 0 0 0
0

( )[(1 ) ] ( )D dGC d I C I D C
d

σ σδσ δε σ δε δε
σ σ=

∂
= = − − ⊗ = −

∂
 (17) 

 
Figure 3: Local damage model with different tension–compression properties. 



ISSN 1582-3024

http://www.intersections.ro

 P. Mata, S. Oller, Al.H. Barbat, R. Boroschek 

Article No.5, Intersections/Intersecţii, Vol.4, 2007, No.2, “Structural Engineering” 82 

Structural Engineering

3.1.2 Constitutive model for steel reinforcements and stirrups 

The steel of the bar reinforcements and stirrups is simulated by mean of employing 
a constitutive law for fibers. The fibers are treated as an orthotropic material with 
the steel’s elastic modulus in the direction of the reinforcement and the concrete’s 
elastic modulus in the other two directions. The Poisson coefficient is taken equal 
to zero to avoid introducing lateral interaction between concrete and steel 
reinforcements. After the yield criterion has been reached the plastic flux is 
oriented in the direction of the fiber [Car et.al. 2000]. 

3.1.3 Simple mixing theory for materials 

The behavior of the composite is defined according to the fractional part of the 
total volume of the compounding substances (see Figure 4). 

 
Figure 4: Each fiber of the section has assigned a composite material. 

It also assumes that in each material point all the components contribute with their 
own constitutive law in the assigned volume proportion. This allows combining 
materials with different constitutive behavior. In this work it is assumed that all 
phases in the mixture have the same strain field. The stress state of the composite is 
obtained starting from a hyper elastic model satisfying the dissipation condition of 
the second principle of thermodynamics, for n materials components, each of them 
with a volume proportion ck , mass density cm  and free energy cψ , the stress is 
given by the equation (18) [Car et.al. 2000]. 

 
1 1

( )         
n n

c
c c c c c

c c

k m k mψσ σ
ε= =

∂
= =

∂∑ ∑  (18) 
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3.2 Energy Dissipating Devices 
The energy dissipating devices are simulated using a rod element with only one 
Gauss integration point. The rotational degrees of freedom are released in both 
ends of the beam to obtain only relative displacements in the device. The 
constitutive law employed for dissipating devices corresponds to a bilinear 
plasticity, but any other one dimensional description can be employed, for example 
in Mata et.al. (2006), a constitutive description for elastomers to be employed in 
energy dissipating devices is given.  

4. NUMERICAL EXAMPLES 

In this section three numerical examples validating the proposed formulation for 
rods in the geometric and material nonlinear range are presented and explained. 
The first two examples correspond to the nonlinear elastic response of a rod in 
static and dynamic range. The third one corresponds to the study of a typical 
flexible and low damped concrete building, which is equipped with energy 
dissipating devices. 

4.1 Elastic Large Bending of a Rod 
This example presents the geometrically nonlinear analysis of a rectilinear 
cantilever beam with a bending moment, M, applied at the free end (Figure 5). See 
Ibrahimbegovic (1995) for more details. 

 
Figure 5: Nonlinear elastic bending of rod. 

For the chosen data the values of the free end bending moments that turns the 
reference rectilinear line into the corresponding circle is 20π, if the applied 
moment is increased again the another smaller circle is formed at M= 40π. The 
beam is modeled employing 40 quadratic finite elements with two Gauss 
integration point to avoid shear locking in the response. It is possible to observe the 
ability of the model to predict the response of the elastic rod even for large 
displacements and rotations. 
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4.2 Dynamic Analysis of Beam: Large Rotations 
The same beam of the previous example has been subjected to an imposed rotation 
of π at the clamped end. The dynamic response is obtained for a density mass of 
3.0x10-5 Kg/cm3, the result of the simulation allows to see the versatility of the 
formulation for predicting the complex configurations of the system during the 
motion. The rotational inertia terms are considered in the formulation allowing 
enhancing the prediction of the dynamic response for the case of large rotations, as 
it can be seen in Figure 6. 

 
Figure 6: Nonlinear dynamic response of rod subjected to an applied rotation. 

 
Figure 7: Columns and beam reinforcements and fiber model of the sections. 

4.3 Nonlinear Seismic Response of Planar Frame 
In this work the seismic nonlinear response of a typical concrete industrial building 
is studied. The building has a bay width of 20 m and 24 m of inter–axes length. 
The story high is 10 m. The concrete of the beam is H–50, (50 Mpa, ultimate 
compression), with an elastic modulus of 35.000 Mpa for the beam and H–30 for 
the concrete of the columns. It has been assumed a Poison coefficient of 0.2 for 
both concretes. The steel bar reinforcements considered in the study and the fiber 

t=0 t=0. t=0. t=1. t=1. t=2. t=2. t=2.



ISSN 1582-3024

http://www.intersections.ro

 Numerical code for seismic analysis of structures incorporating energy dissipating devices 

Article No.5, Intersections/Intersecţii, Vol.4, 2007, No.2, “Structural Engineering” 85 

Structural Engineering

discretization of the sections are those shown in Figure 7.The ultimate tensile stress 
for the steel is 510 Mpa. The dimensions of the columns are 60x60 cm2. The beam 
has a variable section with an initial high of 80 cm on the supports and 120 cm in 
the middle of the span. 

The permanent loads considered are 2000 N/m2 and the weight of upper half of the 
closing walls, that is, 270,000xN. The employed acceleration record is the N–S 
component of the El Centro earthquake, 1940. 

The section of the energy dissipating devices was designed for yielding with an 
axial force of 300.000 N and for a relative displacement between the two ending 
nodes of 1.0 mm. The length of the dissipating devices is of 2.5 m (see Figure 8). 

 
Figure 8: Precast industrial building without and with dissipators. 

In Fig. 9 it is possible to see the contribution of the dampers to reduce the 
displacements response. The obtained reduction is the order of 51% minimizing the 
P–Δ effects. The maximum acceleration shows a reduction of the order of 30% 
compared with the case where no devices are incorporated. 

 
Figure 9: Displacements time history. 
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5. CONCLUSIONS 

The geometrically exact formulation due to Vu–Quoc and Simo for beams and the 
use of appropriated constitutive laws for materials provides a useful tool to 
simulate the earthqake effects on concrete structures. A detailed study of the 
seismic response of structures requires taking into account the geometric and 
material nonlinear behavior of the structure for including the ductility demand on 
structural members, softening behavior, energy dissipation and the P-Δ effect. 

The plastic energy dissipating devices allows the improvement of the seismic 
behavior of flexible and low damped concrete structure studied in this work. From 
the presented studies it is possible to see that the use of plastic energy dissipating 
devices reduces the displacement response about 50% and the acceleration 
response 30% for the N–S component of the El Centro 1940 earthquake record. 
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