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Summary 
Structural Control has been growing in a fast pace as a subject contributing with 
means to alleviate the effects of harming loads. Correlated with other domains of 
human activity (electronics, automatic control, computer science, robotics, new 
materials, etc) important changes in philosophy and practice are recorded in Civil 
Engineering.  

Because Structural Control is still an expensive approach to protect structures, in 
the views are structures as long cable-supported bridges and tall buildings that are 
vital for people and social activities, especially during and after strong winds or 
earthquakes. 

This paper is showing a developing procedure of the classical method of optimal 
control. A first step into this development was previously done when the first 
author was showing that it is possible to lower the degree of arbitrariness for the 
coefficients in the weighting matrices based on energy considerations. 

In this work the method is further developed when the attention is given to using 
reduced state models, which is a more realistic approach than using the full-state 
method as in previous works.  

For the FEM model of the cable-stayed bridge given by an international 
benchmark, simulations have been performed using the method described above. 
External actions are three important strong earthquake acceleration records. The 
discrete time approach time and time-delay existing between the calculation and 
application of the control forces are taken into consideration. Also the process 
noise and measurements are considered. A simple predictive procedure is 
proposed. 

Results of the application are showing that the time-response and also frequency 
responses are considerably reduced: stresses, bending moments, forces, 
displacements, velocities, and accelerations are kept into allowable limits. Based 
on the benchmark performance indexes the controlled system is very competitive. 
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1. INTRODUCTION 

Structural Control has been growing in a fast pace as a subject contributing with 
means to alleviate the effects of harming loads since its beginning [1]. Last years 
have shown a stress on researches about active control of large structures with 
many active devices. Optimal control has been used in [2] and [3] in a centralized 
setting. Decentralized controllers have been proposed in [4], [5] and [6]. Also, 
sliding mode control has been analyzed as a method to cope with uncertainties [7]. 

In the context of optimal control, an energy-based method for choosing the 
weighting parameters was developed [8]. The method is very convenient because it 
implies a simple way to set the control parameters. Using this method, it is possible 
to control large structures using many devices and, in this way, the efficiency and 
reliability of the control are highly increased. Then other authors adopted similar 
energy-based control strategies [9]. 

The international benchmark control problem for seismic response of cable-stayed 
bridges is used [10] to prove the efficiency of the proposed strategy, For this goal, 
the full state methodology for choosing the weighting control matrices is set up in 
order to adapt it to the needs of canonical modal transformation and model 
reduction procedures [11]. 

Therefore, realistic simulations with few measurement devices and reduced order 
estimator are performed. Simulations take into account the discrete-time aspects of 
a real application, along with process noise, measurement noise, and application of 
control forces time delay. In this paper, the method is further improved and tested 
through the use of a simple predictive method for the measurements, in order to 
avoid time delays. Comparisons of the predictive strategy and non-predictive 
control with the benchmark sample control strategy are done. Results show good 
behavior of the proposed control methodologies according to a set of evaluation 
criteria established by the benchmark. 

2. METHODOLOGY. OPTIMAL CONTROL APPROACH FOR 
REDUCED STATE SYSTEMS 

Optimal active control is a time domain strategy that is appropriate for controlling 
the response of structures subjected to strong earthquakes, [12]. The strategy 
allows minimizing the induced structural energy [13]. 
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In Structural Control, the state equation of motion for a n degree of freedom 
controlled system under seismic action is: 
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where x(t) is the 2n-dimensional state, and , are appropriate matrices. A B
Setting the control actions as ( ) ( )t t−u = Kx , the goal of the method is to obtain 
the feedback gain matrix K to minimize a performance index J defined by 

 [
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where Q and R are weighting matrices, 2n×2n-dimensional and m×m-dimensional, 
respectively; and m is the number of the actuators. Minimization of the 
performance criterion (2) implies to solve the Riccati equation 

  (3) 0QPAPBPBRPA =+′+′− −1

Then, the control gain matrix is PBRK ′= −1 . 

Appropriate settings can be found for the full states-based matrices Q and R. For 
example, if ( )11  ,diag MKQ = , then the first term in the brackets of Equation (2) is 
an energy expression and therefore Equation (2) leads to minimization of the 
energy of the structural response. Matrix R can be set as IR r= , where I is the 
identity matrix and r is a scalar, the unique parameter to be determined [13]. 

Usually, only few measurements are available. In this case, the output of the 
system, y, is expressed through a second equation complementing the state-space 
model, in the form: 

  (4) 
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where C is a p×2n measurement matrix and D is the p×m matrix showing the 
influence of the control forces on the output. 

A first step to avoid the inconvenience of using all states is to apply a canonical 
transformation xTx cc =  or x  based on the eigenvector matrix 

. This way, the system (4) takes the new form: 
cccc xPxT == −1

1−= cTP

  (5) 
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where , B , , and . APPA 1−=c BP 1−= cc CPC 1−= cc hPh 1−= cc
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The second step, based on controllability and observability gramians [14,15], is to 
use a state coordinate transformation matrix T  applied to the system (5), i.e., 

. The resulting system is a balanced system: 
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cxTx =
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where 1−= TATA c , cBTB = , 1−= TCC c , and chTh = . If only the first most 
significant q states are retained for the structural response, the system (6) can be 
rewritten in the form: 
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where 1x  are the states to be retained, a q-dimensional vector. 2x  are the states to 
be eliminated, gx&&2

1
222

1
22121

1
222 hAuBAxAAx −−− −−−= . This way, the reduced state 

system is: 
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where:, 21
1

221211 AAAAA −−=r , 2
1

22121 BAABB −−=r , 2
1

22121 hAAhh −−=r , 

21
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1

222 hAC −−=yh , and 1xx =r . 

Therefore, for the system (8), the index to be minimized is: 

 ( )[∫ ′++′+′=
ft
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where [ ]′−= −
21

1
22AAIAe , [ ]′−= −

2
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22BA0Be , ( ) eccee BTQPPTAN 11 −− ′
′

′=  
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′= , and ( ) eccee BTQPPTBR 11 −− ′
′

′= . 

Note that, because of the above transformations, Equation (9) is an approximation 
of the Equation (2). The corresponding Riccati equation is then: 

 ( )( ) ( ) 0QPANPBRRNPBPA =+′+′+′++− −
eeee

1  (10) 

and the gain matrix is expressed by: ( ) ( )ee NPBRR ′+′+= −1K . 
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3. APPLICATION TO THE BENCHMARK MODEL 

For real applications, the model from Equation (8) can be adapted into the form: 

  (11) 

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x
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&&

&&&

where w and v are the process noise and the measurement noise vectors 
respectively; G and H are distribution matrices and ym is the measured output 
vector. 

The states of the system (11) can be estimated from the measured outputs using for 
example a Kalman filter [16]: 

 ( )uDxCyLBuxAx rrrmrr −−++= ˆˆ&̂  (12) 

where  is the vector of estimated states and Lrx̂  is the filter gain matrix deduced 
from solving also a Riccati equation. Then the control forces are: . rxKu ˆ−=

All the procedure shown above is formulated in continuous time. The application 
in the next section is using the discrete time version of the method as the practice 
requires. A time delay between the computation of control forces and their 
application is also considered. Supposing a time delay equal to the sampling time, 

, the control forces are applied at the time, tt∆ i+1. This is one step after the real 
measuring time, ti, when the measurement vector, , was obtained.  im,y

Also, a very simple linear predictive scheme can be applied: the current 
measurement vector, , is considered an average from the previous one, , 
and the future one, , i.e. 

im,y

1, +im

1, −imy
y

  (13) 1,,1, 2 −+ −= imimim yyy

This way, the estimated states from Equation (12) are deduced based on the 
predicted measurement vector defined by Equation (13). 
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The control procedure described previously is applied to the model of a cable-
stayed bridge, Cape Girardeau over Mississippi River, that is the object of a 
benchmark problem [10]. The main span of the bridge is 350.6 m with the side 
spans of 142.7 m in length. It has a total of 128 cables that connect the 29.3 m wide 
deck with the towers, 100 m and 105 m tall. Figure 1 shows the bridge FEM model 
(left) and the three applied actions, El-Centro NS, 1940, Mexico City, 1985, and 
Gebze NS, 1999, (right). 
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Statical reduction of the initial FEM model leads to a 419 dynamical degrees of 
freedom system. The system is reduced to a system with 30 states, as it is done in 
the benchmark sample scheme, for reasons of comparisons. 

For the digital implementation, continuous to discrete-time signal converters are 
included. Four longitudinal direction accelerometers are placed on the on tops of 
the towers and one is located in the mid span. Four sensors measuring 
displacements were located between the towers and the deck [10]. 

In order to evaluate and compare the results of the proposed control strategies, the 
benchmark establishes 18 performance criteria. First six criteria refer to peak 
responses; the criteria from seven to eleven are related to normed responses, while 
the criteria twelve to eighteen are concerned to control strategy. 

In order to choose a suitable value for the weighting matrix R, based on an unique 
scalar r,  comparisons between the responses or criteria heve been performed. For 
this application, in the case of non-predictive control option, the scalar r took 14 
different values within the interval [1.0e19, 1.0e22]. In the case of predictive 
strategy, the scalar r took 16 values in the same interval. 
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Fig.1. FEM model of the bridge (left) and the three external actions (right) 

As an example of the design strategy, in Figure 2 the variation of the criteria 
number three (relative, maximum overturning moment for towers) as a function of 
the scalar r are presented. The values of these criteria given in the benchmark 
sample solution are also presented (as horizontal lines of the same type) for 
comparison. It can be seen a non-constant behavior of the results (values of 
criteria). In addition, this behavior is still a function of the three external actions 
(earthquakes), so different in content and effects. 
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Following the previous paragraphs' ideas, Table 1 shows a numerical comparison 
for the different results obtained for the first 15 criteria under the selected values 
for r. For each of the three earthquake actions there are shown three different 
columns with criteria values. The case a) refers to the benchmark given sample 
control (as the base of comparison). The case b) refers to applying the strategy 
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proposed in the section above without prediction, with r = 3.0e20, while c) refers to 
the case using prediction with r = 7.5e20. 
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Fig.2. Criterion no.3 for the cases without/with prediction (left/right) 

From Table 1, important observations can be withdrawn.  

Table 1. Comparison of the benchmark (a) and the obtained results (b,c) 
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Therefore the superiority of the non-predictive strategy is strongly shown, specially 
by As a general idea, the strategy b) (non-predictive) looks the most successful 
while the predictive strategy c) is better than the benchmark example, a). The 
explanation for this is that the prediction was acceptable for the displacement 
sensors and not acceptable for the acceleration sensors due to the high dynamics of 
these sensors’ signals and the relatively long sampling time (0.02 sec.). The first 6 
criteria, i.e. reduction of the maximum responses for base shear, shear at deck 
level, overturning moment, moment at the deck level, cable tension, displacement 
at the abutment level. 

4. CONCLUSIONS 

In this paper a previous work, [11], is further improved to the need of more 
realistic applications. The weighting matrix Q choice is done on energy-based 
procedure for the full state system. Since the measurements and the estimators 
cannot assure the knowledge or approximation of too many states, a reduced order 
model is employed [14,15]. The matrix Q is reduced following similar 
transformations, as the system itself. Simple prediction scheme for measurements 
is proposed, in order to avoid delays in applying control forces. A finite element 
model of a bridge proposed as a benchmark problem for structural control under 
seismic actions [10] is used for application. Simulations take into account the 
discrete-time aspects of a real application, along with process noise and 
measurement noise. Good behavior of the controlled system according to the 
benchmark evaluation criteria set, especially for the case without prediction, is 
noted and discussed. 
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