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Summary 
The poor performance of many framed RC structures in recent strong earthquakes 
has alerted about the need of improving their seismic behavior especially when 
they are designed according to obsolete seismic codes. Sometimes, RC buildings 
show a low level of structural damping, important second order effects and low 
ductility of the connecting joints, among other defects. 
These characteristics allow proposing the use of energy dissipating devices for improving 
their seismic behavior, controlling their lateral displacements, providing additional 
damping and ductility. In this work, the nonlinear dynamic response of RC buildings with 
energy dissipating devices is studied using advanced computational techniques. A fully 
geometric and constitutive nonlinear model for the description of the dynamic 
behavior of framed structures is used. The model proposed for the structures and 
the dissipating devices is based on the geometrically exact formulation for beams 
which considers finite deformation and finite strains. The equations of motion of 
the system are expressed in terms of sectional forces and generalized strains and 
the dynamic problem is solved using the displacement based method formulated in 
the finite element framework. An appropriated version of Newmark’s integration 
scheme is used in updating the kinematics variables in a classical Newton type 
iterative scheme. Each material point of the cross section is assumed to be 
composed of several simple materials with their own constitutive laws developed in 
terms of the material description of the First Piola Kirchhoff stress vector. 

Appropriated constitutive laws for concrete and for steel reinforcements are 
provided. The simple mixing theory is used to treat the resulting composite. A 
specific finite element based on the beam theory is proposed for modeling the 
energy dissipating devices. Several constitutive descriptions in terms of force and 
displacements are provided for the dissipators. Special attention is paid to the 
development of local and global damage indices capable of describing the residual 
strength of the buildings. Finally, several numerical tests are carried out to 
validate the ability of the model to reproduce the nonlinear seismic response of RC 
buildings with energy dissipating devices. 
KEYWORDS: Geometric nonlinearity, nonlinear analysis, beam model, composites, 
reinforced concrete structures, damage index, mixing theory. 
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1. INTRODUCTION 

Conventional seismic design practice permits designing reinforced concrete (RC) 
structures for forces lower than those expected from the elastic response on the 
premise that the structural design assures significant structural ductility [6]. 
Frequently, the dissipative zones are located near the beam-column joints and, due 
to cyclic inelastic incursions during earthquakes, several structural members can 
suffer a great amount of damage. 
In the last decades, new techniques based on adding devices to the buildings with the main 
objective of dissipating the energy exerted by the earthquake and alleviating the ductility 
demand on primary structural elements have improved the seismic behavior of the 
structures [25]. The purpose is to control the seismic response of the buildings by means of 
a set of dissipating devices. In the case of passive energy dissipating devices (EDD) an 
important part of the energy input is dissipated without the need of an external energy 
supply. 

Several works about seismic control with passive EDDs are available; for example, in 
reference [4] the response of structures equipped with viscoelastic and viscous devices is 
compared; in reference [8] an approximated method is used to carry out a comparative 
study considering metallic and viscous devices. Aiken [1] presents the contribution of the 
extra energy dissipation due to EDDs as an equivalent damping added to the linear bare 
structure. A critical review of reduction factors and design force levels can be consulted in 
[10]. A method for the preliminary design of passively controlled buildings is presented in 
reference [3]. The design methods proposed for RC structures are mainly based on 
supposing that the behavior of the bare structure remains elastic, while the energy 
dissipation relies on the control system. However, experimental and theoretical evidence 
show that inelastic behavior can also occur in the structural elements during severe 
earthquakes [20]. In order to perform a precise dynamic nonlinear analysis of passively 
controlled buildings sophisticated numerical tools became are necessary [14] . 

Considering that most of the elements in RC buildings are columns and beams, one 
dimensional formulations for structural elements appear as a solution combining 
both numerical precision and reasonable computational costs [11]. An additional 
refinement is obtained considering an arbitrary distribution of materials on the 
beam cross section [18], and in this case, the constitutive relationship at cross 
sectional level is deduced by integration. Formulations considering both, 
constitutive and geometric nonlinearity are rather scarce; most of the geometrically 
nonlinear models are limited to the elastic case [7, 21] and the inelasticity has been 
restricted mainly to plasticity [24]. Recently, Mata et.al. [11, 12] have extended the 
geometrically exact formulation for beams due to Reissner-Simo [19, 21, 23] to an 
arbitrary distribution of composite materials on the cross sections for the static and 
dynamic cases. 

From the numerical point of view, EDDs usually have been described in a global 
sense by means of force–displacement or moment–curvature relationships [25] 
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which intend to capture appropriately the energy dissipating capacity of the devices 
[13]. 

In this work, a fully geometric and constitutive nonlinear formulation for beam 
elements is developed. A fiber–like approach is used for representing arbitrary 
distributions of composite materials on the plane beam cross sections. EDDs are 
considered as beam elements without rotational degrees of freedom. 
Thermodynamically consistent constitutive laws are provided for steel, concrete 
and EDDs. The mixing rule is employed for the treatment of the resulting 
composite. A brief description of the damage indices capable of estimate the 
remaining load carrying capacity of the buildings is also given. Finally, the 
numerical simulation of the seismic behaviour of a precast RC structure with EDDs 
is presented. 

2. FINITE DEFORMATION FORMULATION FOR STRUCTURAL 
ELEMENTS 

2.1. Beam model 
The original geometrically exact formulation for beams due to Simo and Vu Quoc 
[21, 22] is expanded here for considering an intermediate curved reference 
configuration according to [7]. Let { }iÊ and{ }iê  be the spatially fixed material and 
spatial frames1, respectively. The straight reference beam is defined by the 
curve , with S 100

ˆˆ ES=ϕ ∈  [0,L] its arch–length coordinate. Beam cross sections 
are described by means of the coordinates directed alongβξ { }βÊ . The curved 
reference beam is defined by means of the spatially fixed curve given 
by . Each point on this curve has rigidly attached an 

orthogonal local frame

3
00 ˆ)(ˆ R∈=∑ ii i eSϕϕ

( ) R∈Λ= ii ESt ˆˆ
00 , where (3) is the orientation 

tensor
SO∈Λ0

2. The planes of the cross sections are normal to the vector tangent to the 
reference curve3, i.e. ( )StS 01,0

ˆˆ =ϕ . The position vector of a material point on the 

curved reference beam is 
ββ βξϕ

0000
ˆˆˆ ∑ Λ+= Ex . 

The motion deforms points on the curved reference beam from  to ( )S0ϕ̂ ( )tS ,ϕ̂  
(at time t) and the local orientation frame is simultaneously rotated together with 
the beam cross section, from ( )S0Λ to ( )tS ,Λ by means of the incremental 

rotation tensor as (3). In general, does not coincides with  SOn ∈ΛΛ=Λ 0 1̂t S,ϕ̂
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because of the shearing [21]. The position vector of a material point on the current 
beam is 

∑∑ Λ+=+=
β

ββ
β

βββ ξϕξϕξ EtSttStSx ˆˆ),(ˆ),(ˆ),,(ˆ  

Eq. (1) implies that the current beam configuration is determined by ( . The 
deformation gradients of the curved reference beam and of the current beam referred to the 
straight beam are denoted by F

)Λ,ϕ̂

0 and F, respectively. The deformation gradient 
 is responsible for the development of strains and can be expressed as [9, 11] 1

0: −= FFFn

nnsn ttt Λ+⊗⎥
⎦

⎤
⎢
⎣

⎡
+−== ∑−

011
0

1
0

ˆˆ~ˆ,ˆ1
β

ββξωϕ
F

FFF  

 
where 0F  is the determinant of and  is the curvature tensor relative to 

the curved reference beam. In Eq. (2) the term defined as corresponds to the 
reduced strain measure of shearing and elongation [9, 21] with material description given 
by . 

0F T
nSnn ΛΛ≡ ,~ω

1,ˆˆ tSn −=ϕγ

γ̂ˆ TΛ=Γ
The material representation of Fn is obtained as . It is possible to construct 

the strain tensor , which conjugated to the asymmetric First Piola Kirchhoff 

(FPK) stress tensor referred to the curved

0n
m
n ΛΛ= FF T

nn Λ−= nFε

ii tP 0̂
ˆP ⊗= 1 reference beam [21]. The spatial 

strain vector acting on the current beam cross section is obtained as  and the 

spatial stress resultant  and stress couple  vectors can be estimated from  according 
to 

inn t0ˆ εε =

n̂ m̂ 1̂P

( ) Α×−=Α= ∫∫
Α

Α
dPxSmdPSn 11

ˆˆˆ)(ˆ;ˆ)(ˆ ϕ  

The material form of  and are obtained as nP nj ˆ,ˆ,ˆ ε m̂ n
T

n εε ˆˆ Λ= j
Tm

j PP ˆˆ Λ= , 

and , respectively. An objective measure of the strain rate vector 
acting on any material point can be deduced using the definition of the Lie derivative 

operator  [11, 12] as follows: 

nm Tm ˆˆ Λ= mm Tm ˆˆ Λ=
nŝ

⎥⎦
⎤

⎢⎣
⎡•
∇

                                                      
1 The indices i  and β range over {1,2,3} and ¶∈⇔3♦, respectively. 

2 The symbol SO(3) is used to denote the finite rotation manifold [21, 22]. 
3The symbol  is used to denote partial differentiation of ( ) x,• ( )•  with respect to x. 
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β
β

ββ
β

β ζυϕυϕζωγε tts snsnsnnnn
ˆ~ˆ~ˆˆ~ˆˆˆ ,,, ∑∑ +−=⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

∇∇∇
&&&&  

where is the current spin or angular velocity of the beam cross section with 

respect to the curved reference beam. The material form of Eq. (4) is . 

T
nnn ΛΛ≡ &υ~

n
T

n ŝˆ Λ=S
The classical form of the equations of motion of the Cosserat beam for the static case are 

44 344 21
&&

1

000,
~~ˆˆˆˆ

D

nnnpS nn ρρρ υυαϕ SSA ++=+  

321
&&

2

ˆˆ~ˆˆˆ,ˆ,ˆ 000

D

nnnpSS mnm ϕυυαϕ ρρρ ×++=+×+ SII  

where and  are the external body force and body moment per unit of reference length 

at time t, 

pn̂ pm̂

00
ˆ, ρρ SA and 0ρI are the cross sectional mass density, the first mass moment 

density and the second mass moment density per unit of length of the curved reference 
beam, respectively; their explicit expressions can be consulted in references [9, 22]. 

is the angular acceleration of the beam cross section and  and are 

the axial vectors of and , respectively. For most of the practical cases, the terms D

2~~
n

T
nnn υα −ΛΛ≡ &&

nυ̂ nα̂

nυ
~

nα
~

1 
and D2 can be neglected. 
Considering a kinematically admissible variation4 ( )θδϕδ ˆ,ˆ≡h of the pair  [22], 
taking the dot product with Eqs. (5a) and (5b), integrating over the length of the curved 
reference beam and integrating by parts, we obtain the nonlinear functional 

( Λ,ϕ̂ )

( )hG ,,ˆ Λϕ  
corresponding to the weak form of the balance equations [7, 22] 

 

( ) ( )[ ]
( )[ ]

[ ] ( ) 0ˆˆˆˆˆˆˆˆ

ˆˆˆˆˆ

ˆ,ˆˆ,ˆˆ,ˆ,,ˆ

0

000 ˆ

=⋅+⋅−⋅+⋅−

+⋅+⋅+

⋅+⋅×−=Λ

∫

∫
∫

mndSmn

dS

dSmnh

L

L pp

L nnn

L SSS

θδϕδθδϕδ

υαθδϕϕδ

θδϕθδϕδϕ

ρρρ υ IIA &&

G

 

 
 
The terms ( )SS ,ˆˆ,ˆ ϕθδϕδ ×−  and  appearing in Eq. (6) correspond to the co–rotated 

variations of the reduced strain measures  and in spatial description. 
S,θ̂δ

nγ̂ nω̂

2.2. Energy dissipating devices 
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The finite deformation model for EDDs is obtained from the beam model releasing the 
rotational 
degrees of freedom and supposing that all the mechanical behavior of the device is 
described in terms of the evolution of a unique material point in the middle of the resulting 
bar. 
The current position of a point in the EDD bar is obtained from Eq. (1) and considering that 

=0 asβξ ( ) ( )tStSx ,ˆ,ˆ ϕ= . Supposing that the current orientation of the EDD bar of initial 

length L* is given by the tensor ( ) ( )0*,0*,,* ≠Λ=ΛΛ &
St , the spatial position of the 

dissipative point in the EDD is obtained as ( )tL ,2/*ϕ̂  where L*/2 is the arch–length 
coordinate of the middle point in the bar element and the axial strain and the axial strain 
rate in the dissipative point are obtained from Eqs. (2) and (4) as 

),2/*(
1

,2/*(
1

),2/*(11

)(ˆ
d
d

}1
ˆ)),ˆ~,ˆ(*{()(ˆ

1}ˆ),ˆ*{()(ˆ

tLtL

tLS
T

t
tESnS

Tt

Et

Γ≈⋅−Λ=Γ

−⋅Λ=Γ

ϕυϕ

ϕ

&&
 

Finally, the contribution of the EDD bar to the functional of Eq. (6), written in the material 
description, is given by 

),2*/(
d1* 1 )}ˆ*(M][)ˆ*{(ˆ

tL

TTT

L

m dSn ϕϕδδ &&ΛΛ+Γ= ∫EDDG  

where it was assumed that 00 ≈ρI , i.e. the contribution of the EDDs to the rotational 
mass of the system is negligible and [M]d is the EDD’s translational inertia matrix. The 
term  corresponds to the material form of the 
variation of the axial strain in the EDD. 

11
ˆ)),ˆˆ,ˆ(*(ˆ ESS

T ⋅×−Λ=Γ ϕθδϕδδ

3. CONSTITUTIVE MODELS 

In this work, material points on the cross sections are considered as formed by a composite 
material corresponding to a homogeneous mixture of different simple components, each of 
them with its own constitutive law. The resulting behavior is obtained by means of the 
mixing theory. Two kinds of nonlinear constitutive models for simple materials are used: 
the damage and plasticity models. The constitutive models are formulated in terms of the 
material form of the FPK stress and strain vectors, and , respectively [11, 12]. mP1̂ nε̂

 

3.1. Degrading materials: damage model 
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The progress of the damage is based on the evolution of the scalar damage parameter d ∈  
[0, 1] [15]. Starting from an appropriated form of the free energy density and considering 
the fulfillment of the Clasius–Plank inequality and applying the Coleman’s principle [11] 
the following constitutive relation in material form is obtained: 
 

m
n

ms
n

mem PddP 011
ˆ)1(ˆˆ)1(ˆ −==−= εε CC  

 
where  and = (1-d)  is the secant constitutive tensor. Eq. (9) shows that the 
FPK stress vector is obtained from its elastic counterpart by multiplying it by the factor (1-
d). 

meC msC meC

The damage yield criterion F [2, 5] is defined as a function of the undamaged elastic free 
energy density and written in terms of the components of the material form of the 
undamaged principal stresses, , as m

pP̂ 0

∑
=

≤−−+=−=
3

1

2
0 0)()]1(1[

i
c

m
ipc fPnrfPF  

 
where P is the equivalent stress, r and n are given in function of the tension and 
compression strengths fc and ft and the parts of the free energy density developed when the 
tension, , or compression, , limits are reached and are defined as Lt )(Ψ0

Lc )( 0Ψ
 

∑
=

±
=Ψ

3

1 0

00
, 2

)(
i

ni
m

ip
Lct

P
ρ

ε
,  LcLtL )()( 000 Ψ+Ψ=Ψ

2
1

0
0 )2( Ltt Ef Ψ= ρ , 2

1

0
0 )2( Lcc Ef Ψ= ρ , 

t

c

f
fn = , 

∑
∑

=

== 3

1 0

3

1 0

i
m

ip

i
m

ip

P

P
r  

 
A more general expression equivalent to that given in Eq. (10a) [2] is given by 
 

( ) ( )cfGPGF −= , ( ) ( ) X
X

X
X

X
XGXG

*1(*

11
−

−=−=
k

e  

 
where the term ( )XG  gives the initial yield stress for certain value of the scalar parameter 

*XX = and for ∞→X  the final strength is zero. The parameter · is calibrated to 
obtain an amount of dissipated energy equal to the specific fracture energy of the 
material ; where is the tensile fracture energy and lc

d
f

d
f lGg /= d

fG c is the characteristic 
length of the fractured domain. The evolution law for the internal damage variable d is 
given by 
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P
G

P
F

∂
∂

=
∂
∂

= μμ &&&d  

 
where  is the damage consistency parameter [11]. Finally, the Kuhn-Thucker 

relations: (a)

0≥=P&&μ
0≥μ& , (b) 0≤F , (c) 0=Fμ& have to be employed to derive the 

unloading–reloading conditions i.e. if 0<F  the condition (c) imposes 0=μ& ; on the 
contrary, if 0>μ&  then F = 0. 

3.1.1. Viscosity 
The rate dependent behavior is considered by using the Maxwell model. The FPK stress 
vector  is obtained as the sum of a rate independent part , Eq. (9), and a viscous 

component  as 

mtP1̂
mP1̂

mvP1̂
 

)ˆˆ()1(ˆˆˆˆˆ
0

111 nn
me

n
sm

n
mvmvmmt

E
dPPP SS ηεηε +−=+=+= CC  

where is the secant viscous constitutive tensor, , and 
the parameter η is the viscosity. The linearized increment of the FPK stress vector (material 
and co–rotated forms) are calculated as 

mssm E C0/ηη = memv d CC )1( −=

 

n
sm

n
mvmtP Ŝˆ1̂ Δ+Δ=Δ ηεC ,  ]ˆ[]ˆ[]ˆ[ sssv

1 nn
t sP

∇∇

Δ+Δ=Δ ηεC
 

where  and . The explicit form of the terms  and 

 and the material description of the tangent constitutive tensor can be consulted 
in reference [12]. 

TmvΛΛ= CC sv Tsmss ΛΛ= ηη nŜΔ

]ˆ[
∇

Δ ns mvC

3.2. Plastic materials 
In the case of materials which can undergo non–reversible deformations the plasticity 
model formulated in the material configuration is used for predicting their mechanical 
response. Assuming small elastic, finite plastic deformations, an appropriated form of the 
free energy density and analogous procedures as those for the damage model we have 

e
n

meP
nn

ms
e
n

p
e
nm k

P εεε
ε
ε

ρ ˆ)ˆˆ(
ˆ

),ˆ(ˆ
01 CC =−=

∂
Ψ∂

=  
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where the is the elastic strain calculated subtracting the plastic strain  from the total 

strain  and ρ

e
nε̂

P
nε̂

nε̂ 0 is the density in the material configuration. 

Both, the yield function, , and plastic potential function, are formulated in terms of 

the FPK stress vector  and the plastic damage internal variable k

pF pG
mP1̂ p as 

0),ˆ()ˆ(),ˆ( 111 =−= p
m

p
m

pp
m

p kPfPkP PF ,  KG =),ˆ( 1 p
m

p kP

where  is the equivalent stress, which is compared with the hardening function 

 and  is a constant value [16]. In this work, k

)ˆ( 1
m

p PP
),ˆ( 1 p

m
p kPf K p constitutes a measure of the 

energy dissipated during the plastic process and it is defined [17] as 

∫
∞

=
⋅==

0 1
P
f

ˆg
t

P
n

m

c

P
f tP

l
G

dε& , ∫= ≤⋅=≤
t

t

P
n

m
P
f

p dtP
g

k
0 1 1]ˆ1[0 ε  

where is the specific plastic fracture energy of the material in tension and lP
fG c is the 

length of the fractured domain defined in analogous manner as for the damage model. The 
integral term in Eq. (17) corresponds to the energy dissipated by means of plastic work. The 
flow rules for the internal variables and kP

nε̂ p are defined as 

m
pP

n P1̂

ˆ
∂

∂
=

G
λ&&ε , ( ) P

n
P
fp

m
m
pP

fp
m

p GkP
P

GkPk ε&&& ˆ),,ˆ(ˆˆ,,ˆ
1

1
1 ⋅=

∂

∂
⋅= %%
G

λ  

 
where λ  is the plastic consistency parameter and %  is the following hardening vector [16]. 
In what regards the hardening function of Eq. (16), the following evolution equation has 
been proposed: 

& ˆ

)()1()(),ˆ( 1 pcpp
m

p krkrkPf σσ −+=  
where r has been defined in Eq. (10c) and the scalar functions σt(kp) and σc(kp) describe the 
evolution of the yielding threshold in uniaxial tension and compression tests, respectively. 
As it is a standard practice in plasticity, the loading/unloading conditions are derived in the 
standard form from the Kuhn-Tucker relations formulated for problems with unilateral 
restrictions, i.e. , (a) , (b) and (c)0≥λ& 0≤pF 0=pFλ& . Explicit expressions of  and 
of the material form of the tangent constitutive tensor can be reviewed in references [11, 16, 
17]. 

λ&

 
 
 

3.3. Mixing theory for composites 
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Each material point on the beam cross section is treated as a composite material according 
to the mixing theory [16]. Supposing N different components coexisting in a generic 
material point subjected to the same material strain , we have the following closing 

equation:
nε̂

( ) ( ) ( )Nnqnnn εεεε ˆ...ˆ...ˆˆ 1 ====≡ , which imposes the strain compatibility 

between components. The free energy density of the composite, Ψ , is obtained as the 
weighted sum of the free energy densities of the N components. The weighting factors 
correspond to the quotient between the volume of the qth component, Vq, and the total 

volume, V, such that . 1=∑
q

pk

The material form of the FPK stress vector for the composite, including the 
participation of rate dependent effects, is obtained in analogous way as for simple materials 
i.e. 

mt
1̂P

( ) ( )
q

N

q
nn

N

q
pqq E

dkPPkP ∑ ∑ ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=+≡ Ŝˆ1ˆˆˆ

0

memv
1

m
1

mt
1

ηεC  

 
 

where ( )qPm
1̂  and ( )qPmv

1̂  correspond the strain and rate dependent stresses of each one of 

the N components. The material form of the secant and tangent constitutive tensors for the 
composite, msC  and mtC , are obtained in an analogous manner [16]. 

3.4. Constitutive relations for EDDs 
The constitutive law proposed for EDDs is based on a previous work of the authors [13] 
which provides a versatile strain–stress relationship with the following general form: 

( ) ( ) ( )tPtPtP mmm ,,,, 121111 εεεε && +=  

where mP  is the average stress in the EDD, the strain level, t the time,  the strain 

rate, 

1ε 1ε&
mP1 and mP2  are the strain dependent and rate dependent parts of the stress, 

respectively. The model uncouples the total stress in viscous and non-viscous components, 
which correspond to a viscous dashpot device acting in parallel with a nonlinear hysteretic 
spring. The purely viscous component does not requires to be a linear function of the strain 
rate. Additionally, hardening, and variable elastic modulus can be reproduced [13]. 
 
 
 

4. NUMERICAL IMPLEMENTATION 
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In order to obtain a numerical solution, the linearized form of Eq. (6) is written as 
( )[ ] ( ) ( ) phDhh ⋅Λ+Λ=Λ ,,ˆ,,ˆ,,ˆ ****** ϕϕϕ GGGL  

where  is the linear part of the functional  at the 

configuration 

([ h,,ˆ ** ΛϕGL )] )( h,,ˆ ΛϕG
( ) ( )**,ˆ,ˆ Λ=Λ ϕϕ  and ( )θϕ ˆ,ˆ ΔΔ≡p  is an admissible variation. The term 

( )h,,ˆ ** ΛϕG  supplies the unbalanced force and it is composed by the contributions of the 

inertial, external and internal terms; and ( ) phD ⋅Λ ,,ˆ **ϕG , gives the tangential stiffness 
[22]. 
The linearization of the inertial and external components,  and give 

the inertial and load dependent parts of the tangential stiffness, and , respectively, 
and it can be consulted in [22, 23]. The linearization of the internal term is calculated as 

pD ⋅ineG pD ⋅extG

*IK *PK

 

[ ] [ ][ ]
[ ]

[ ] [ ][ ] [ ] [ ] [ ]( )
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where the operators [ ], [nst

*C S*], [ ], [ ], [ ] and [*B st
*Υ *ν F~ ] can be consulted in 

references [9, 11,12, 22]. The linearized terms KG*, KM* and KV*, evaluated at the 
configuration , give the geometric, material and viscous parts of the tangent 
stiffness, which allows to rewrite Eq. (22) as 

( **,ˆ Λϕ )

 
[ ] *P*G*V*M*I** KKKKKGG +++++=L  

The solution of the discrete form of Eq. (25) by using the FE method follows identical 
procedures as those described in [22] for an iterative Newton-Rapson integration scheme 
and it will not be included here. 

5 DAMAGE INDICES 

A measure of the damage level of a material point can be obtained as the ratio of the 
existing stress level to its elastic counter part. Following this idea, it is possible to define 

the fictitious damage variable 
∨

D  as [2] 
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where m
iP1  and m

iP 01 are the absolute values of the components of the existing and elastic 

stress vectors, respectively. Initially, the material remains elastic and , but when all 

the energy of the material has been dissipated 

0=
∨

D

01 →m
iP  and . Eq. (26) can be 

extended to consider elements or even the whole structure by means of integrating over a 
finite volume as explained in reference [11]. 

1→
∨

D

6 NUMERICAL EXAMPLES 

6.1 Seismic response of a precast RC building with EDDs 
The nonlinear seismic response of a typical precast RC industrial building shown in 
Figure 1 is studied. The building has a bay width of 24 m and 12 m of inter–axes 
length. The story hight is 12 m. The compression limit of the concrete is 35 MPa 
with an elastic modulus of 290.000 MPa. It has been assumed a Poisson coefficient 
of 0.2. The ultimate tensile stress for the steel is 510 MPa. This figure also shows 
some details of the steel reinforcement of the cross sections. The dimensions of the 
columns are 60x60 cm2. The beam has an initial high of 60 cm on the supports and 
160 cm in the middle of the span. The permanent loads considered are 1050 N/m2 
and the weight of upper half of the closing walls with 432,000 N. The input 
acceleration corresponds to the N–S component of the EL Centro 1940 earthquake. 

 

 
 

The half part of the building is meshed using 4 quadratic elements with two Gauss 
integration points for the resulting beam and column. The EED element was 
calibrated for reproducing a plastic dissipative mechanism. The properties of the 
device were: a yielding force of 150.000 N for a displacement of 1.5 mm. 
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The results of the numerical simulations allow seeing that the employment of 
plastic EDDs contributes to improve the seismic behavior of the structure. Figure 
2a shows the hysteretic cycles obtained from the lateral displacement of the upper 
beam–column joint and the horizontal reaction (base shear) in the columns for the 
structure with and without devices. It is possible to appreciate that the non–
controlled structure (bare frame) presents greater lateral displacements and more 
structural damage. Figure 2b shows the hysteretic cycles obtained in the EDD, 
evidencing that part of the dissipated energy is concentrated in the controlling 
devices, as expected. 

Figure 3 shows the time history response of the horizontal displacement of the 
upper beam– column joint. A reduction of approximately 40 % is obtained for the 
maximum lateral displacement when compared with the bare frame. A possible 
explanation for the limited effectiveness of the EDD is that the devices only 
contribute to increase the ductility of the beam–column joint without alleviating the 
base shear demand on the columns due to the dimensions of the device and its 
location in the structure. 
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7 CONCLUSIONS 

In this work, a geometrically exact formulation for initially curved beams has been 
extended to consider arbitrary distributions of composite materials on the cross 
sections in the seismic case. The consistent linearization of the weak form of the 
momentum balance equations considers the constitutive nonlinearity with rate 
dependent effects. The resulting model is implemented in a displacement based 
FEM code. An iterative Newton-Rapson scheme is used for the solution of the 
discrete version of the linearized problem. An specific element for EDD is 
developed, based on the beam model but releasing the rotational degrees of 
freedom. Each material point of the cross section is assumed to be composed of 
several simple materials with their own constitutive laws. The mixing rule is used 
to describe the resulting composite. Viscosity is included at constitutive level by 
means of a Maxwell model. Beam cross sections are meshed into a grid of 
quadrilaterals corresponding to fibers directed along the beam axis. Two additional 
integration loops are required at cross sectional level in each integration point to 
obtain the reduced quantities. Local and global damage indices have been 
developed based on the ratio between the visco elastic and nonlinear stresses. The 
present formulation is validated by means of a numerical example: the study of the 
seismic response of a RC precast structure with EDDs. 
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