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Summary  
A numerical model has been developed for the simulation of wave transformations 
that is applicable to irregular bottom topographies. Model is based on nonlinear 
parabolic mild slope equation and could simulate wave shoaling, refraction, 
diffraction together. The numerical model has been solved by Mac Cormack 
Method with using Point Gauss Seidel Iteration Method. Wave phase gradient of 
Ebersole (1985) has been used to determine local wave number in the model. The 
model is applicable to arbitrary varying bottom topographies. Unidirectional 
waves are considered for the numerical model. It is a reliable tool to simulate wave 
shoaling, refraction and diffraction. Model predictions are compared with the 
physical experiment over semicircular shoaling area. Model has been applied to 
Fars Gulf located on the Mediterranean Sea Coast of Iran which has an 
industrially important role for Iran since a great industrial harbour and oil 
pipelines are located.  
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1. INTRODUCTION  

Berkhoff (1972) solved the wave propagation from deep water to shallow water 
under combined refraction and diffraction effect with an elliptical equation. This 
equation is called as mild slope equation in the literature.  
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C is the wave celerity, Cg is the group velocity, w is angular frequency,  is two 
dimensional complex potential function. It is assumed that the bottom topography 
has a mild slope for this equation. It is to say 

φ~

1/ <<∇ khh  where h, k, ∇ are water 
depth, wave number, horizontal gradient operator, respectively. This elliptical mild 
slope equation includes combined refraction-diffraction, shoaling and reflection 
effects.  
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Radder (1979) recommended parabolic approach because of complexity of solving 
elliptical mild slope equation. Elliptical mild slope equation is reduced to 
Helmholtz equation and parabolic equation is obtained after this reduction. 
Parabolic equation is applicable to the short waves over irregular bathymetries in 
large coastal areas if reflection is negligible.  

Kirby and Dalrymple (1983) solved parabolic equation for the combined 
refraction-diffraction of Stokes waves by mildly varying topography. In this 
approach, only unidirectional waves and forward scattered components arising 
from interaction with structures or inhomogenities of the domain are considered. 
This parabolic equation is obtained by a WKB- type expansion for the velocity 
potential. That represents a wave travelling in a prespecified direction. 

Dalrymple et al. (1984) developed a parabolic model to simulate combined 
refraction- diffraction phenomena including dissipation of wave energy. They 
focused on the nature of the localized energy dissipation. A shadow region of low 
wave energy exists due to the region of localized dissipation.  

Kirby (1986) developed rational approximations based on minimax principles to 
overcome small angle incidence limits in the parabolic equation.  

In this study, parabolic equation proposed by Kirby and Dalrymple (1983) is 
solved as the governing equation including both refraction and diffraction effects. 
This equation amplitude order, therefore it is simpler to solve than the potential 
order equations. This nonlinear equation gives approximate results with the general 
elliptic mild slope equation and it overcomes small angle incidence restriction of 
the linear parabolic equation. Furthermore, the definition of wave number 
recommended by Ebersole (1985) is used in this study. Ebersole (1985), developed 
an alternative equation that expresses the propagation of linear waves over mild 
sloping bathymetry and also defined wave number as a function wave phase 
derivative.  

2. THEORY  

Yue and Mei (1980) obtained a parabolic equation that described the propagation 
of weakly nonlinear Stokes waves in a specified direction over constant depth. This 
nonlinear Schrödinger equation is given below.  
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A is complex amplitude; x is the principal direction of propagation. k referred wave 
number. 
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Equation (2.1) is applicable to the bathymetry with a constant depth. Kirby and 
Dalrymple (1983) proposed a more general formulation suitable for slow but 
arbitrary depth variations. Nonlinear effects are important when waves are focused 
by topographic variations. The inclusion on nonlinearity enhances the lateral 
spread of energy away from regions with high waves.  
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k : Wave number (1/m) 
C : Wave celerity (m/sec) 
Cg : Group velocity (m/sec) 
k0 : Wave number in deep water (1/m) 
A : Wave amplitude (m) 

Subscripts x and y define the first derivatives in x and y direction, respectively. 

Derivation of governing equation that is solved in this study can be found below 
where k0  is the initial wave number at deep water.  

Ebersole (1985) showed the relationship between wave number and phase function 
with the equation below where s is wave phase function and H is wave amplitude 
in the equation (2.5). 
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In this study, equations (2.4) and (2.5) are used to solve the propagation of 
travelling waves from deep water to shallow water in a prespecified direction over 
slowly arbitrary bottom topography under combined refraction-diffraction effects.  

3. NUMERICAL MODEL 

MacCormack method is applied to equation (2.4) using Point Gauss Seidel iteration 
method. MacCormack method is a multistep method. Firstly, forward finite 
difference approximations are used to obtain the predictor and then backward finite 
difference approximations are applied to the governing equation to find the 
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corrector. This method gives more realistic results then the other methods since it 
assures static stability. Point Gauss Seidel Iteration provides to reach the 
convergence more rapidly because the current variables of dependent variable are 
used to compute the neighbouring points as soon as they are available.  

4. APPLICATION TO SEMICIRCULAR SHOALING AREA 

Whalin (1971) tested wave refraction and diffraction phenomena over a 
semicircular shoaling area. The model topography was determined with the 
equations below and shown in Figure 1. 

4572.0),( =yxh  ))(67.100( yGx −≤≤  (4.1) 

( )xyG

yxh

−−+

=

)(67.10
25
14572.0

),(
 ))(29.18)(67.10( yGxyG −≤≤−   (4.2) 

1524.0),( =yxh  )34.21)(29.18( ≤≤− xyG  (4.3) 

( )[ ] 2/1096.6)( yyyG −=  )096.60( ≤≤ y  (4.4) 

In these equations, x and y are in meters. 
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Figure 1: Tank bathymetry (h(m)) 

The bathymetry is symmetric to the centerline y=3.048m. Model topography shoals 
from 0.4572m to 0.1524m.  

The wave amplitude distribution along the centerline for the wave approaching 
normally with the wave period T=2sec has been shown in Figure 2 where the 
consistency between numerical and physical results can be observed. Diffraction 
effects become an important role after the distance of 15m in x direction and a 
caustic region occurs so the linear theory fails in that region. With the use of 
parabolic mild slope equation, this problem has been overcome.  
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Figure 2: Wave amplitude (cm) along x-axis (y=3.048m, T=2 sec., a=0.0075m, ) 00=θ

5. APPLICATION TO FARS GULF 

Fars Gulf is located in the Mediterranean Coasts of Iran. Fars Gulf coast has a great 
harbour and oil pipelines therefore it is important from the coastal engineering 
point of view. The dominant wave direction is SSW. Significant wave period 
T=9.02sec and significant wave height Hs=5.46m for the return period t=50 years. 
In this study, a part of Fars Gulf coast has been numerically modeled. In Figure 3, 
the bathymetry has been given. Depths are in meters. In Figure 4, the predicted 
wave height distribution has been shown. The wave heights are in meters, too.  
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Figure 3: Bathymetry of Fars Gulf Coastal Region (Depths are in meters.) 
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Figure 4: Wave height distribution (Wave heights are in meters.) 
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6. CONCLUSIONS 

A numerical model that simulates the propagation of waves from deep water to 
shallow water under shoaling, refraction and diffraction effects has been presented. 
Nonlinear effects have been included in the solution. Mac Cormack method is 
applied to the governing model equation using Point Gauss Seidel Iteration 
method. The nonlinear parabolic model has been used in this study so as to 
overcome caustics problems of the linear theory. The use of wave phase gradient 
provides more accurate results to obtain the local wave number. The model can be 
successfully used over arbitrary bathymetries in the prespecified direction.  
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