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Abstract 
The paper demonstrates the perfect analogy between the finite element analysis of 
deformability problems and heat transfer problems. For each case, the main steps 
of the procedure are followed in order to obtain the finite element equations, which 
have the same shape. The important conclusion of the study is the possibility of 
extending such design methods to different engineering problems.    
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1. INTRODUCTION 

The analysis of a system, which takes into account all the operating parameters, is 
difficult, being almost impossible from practical point of view. That is way, a 
series of hypotheses concerning the geometry and the constitutive materials of the 
system are admitted. There are also adopted assumptions for phenomenon causes. 
This procedure leads to two types of models: the cause model and the system 
model. 
The models can be analytical models or numerical models and they consist in 
continuous or discrete virtual systems. 

The most powerful numerical method for the analysis of both structural 
deformability and conductive heat transfer is the finite element method. 

The present paper approaches the perfect similarity between the problem of axial 
elastic deformability for a finite element of bar type (1D) and the diathermancy 
problem for the same finite element. 

 

2. MATRIX EQUILIBRIUM EQUATION FOR OF AN AXIAL ELASTIC 
DEFORMABLE BAR  
The finite element of bar type is the classic one, having two nodes at its ends, at 
each node the nodal displacement along x  axis being defined,  (vector) and the 
corresponding nodal force,  (vector). There are defined: 
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x ddd = } - the vector of nodal displacements for axial elastic 
deformable element, 
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x fff =  - the vector of nodal forces for the axial elastic deformable 
element. 

For any current section of the element, located at a distance x  from the 
axis origin, Hooke’s law can be expressed. It states the relation between the axial 
stress, )(xxσ /axial force  and the corresponding displacement gradient 
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or the equivalent relation: 
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The displacement field is: 

For the element nodes can be shortly written that: 

{ } [ ]{ }α
α
α

αα
αα

A
x
x

x
x

d
dxd
dxd

x
xx

xx =







⋅








=









⋅+
⋅+

==








=
=

2

1

2

1

221

121

22

11

1
1

)(
)(

              (4) 

where 

{ } [ ] { xdA ⋅= −1α }                                                                                                   (5) 

and then: 
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where  represent the shape functions, that for type of element have the form )(xNi

l
xxN −=1)(1 ,  

l
xxN =)(2                                                                                   (7) 

and their derivatives with respect to x  have the expressions: 

l
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l
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d 1)(2 =                                                                            (8) 

The displacement gradient function can be related to nodal displacements. 
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By using Hooke’s law it can be stated: 
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where, by expansion, rearrangement, and substitution of known terms, it is 
obtained: 
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that represents the matrix equilibrium equation for an axial elastic deformable bar. 
It can be shortly expressed as: 

[ ] { } { }xx fdk =⋅                                                                                                     (13) 

where  is the stiffness matrix of the element. [ ]k

Equation (13) has been obtained by considering that the axial force at node 1 is a 
negative one, while the axial force at node 2 is a positive one. 

 

3. MATRIX EQUILIBRIUM EQUATION FOR A DIATHERMIC 
BAR 

The adopted finite element is a unidimensional one, having the cross – sectional 
area A. At the nodes, which are provided at the element ends, the temperatures iT

}

 
are defined (a scalar quantity) and the corresponding heat flow,  (a vector). 
There are expressed: 

xiQ

{ } { }21 TTT T = -the vector of nodal temperatures for the diathermic element and 

{ } { 21 xx
T

x QQQ = -the vector of heat flow for the same element. 

For any current section of the element, located at a distance x  from the origin, 
Fourier’s relation can be written and it states the relation between the heat 
flux, / heat flow,  and the corresponding temperature gradient, 
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where xλ  represents the thermal permeability characteristic. 

The equivalent relation is: 

{ } [ ] { })()( xgAxQ xTxx ⋅−= λ                                                                                (15) 

The function of temperature variation along the element is a first degree function: 
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The temperature function can be related to nodal temperatures: 
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It results that: 

{ } [ ] { }TA ⋅= −1α                                                                                                    (18) 

So: 
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where  are the shape functions that for an element with two nodes have the 
following form: 
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The function of temperature gradient is expressed in terms of nodal 
temperatures: 
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which, by expansion, rearrangement and substitution of known terms becomes: 
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that represents the matrix equilibrium equation of the diathermic bar, expressed in 
terms of temperatures, and which can be shortly expressed: 

[ ] { } { }xQT =⋅λ                                                                                                      (26) 

where [ ]λ  is the permeability matrix of the diathermic bar. 

Equation (26) has been obtained by considering that the heat flow which enters 
node 1 is positive, while the heat flow which exits node 2 is negative. 

 

4. CONCLUSIONS  

By comparing the matrix equilibrium equation (12), stated for the axial elastic 
deformability case, with equation (25), valid for diathermancy case, it can be 
noticed that they have the same shape. In the second mentioned equation, the 
longitudinal modulus of elasticity  that occurs in the first equation, was 
substituted by the thermal permeability characteristic, 

xE

xλ . 

Taking into account that the two equilibrium equations are identical from a formal 
point of view, it can be concluded that these procedures concerning the elastic 
deformability analysis can be also applied for heat transfer problems, at least for 
the stationary case. 
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Such formal similarities between different phenomena offer to the analysts the 
possibility to perform analogies, but also to use and / or extend design methods of 
apparently different engineering problems. 
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The existing soft for deformability analysis could be easily adapted for heat 
transfer problems, but also for other problems, as fluid flow or pressure. 
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