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Abstract 
The work presents the possibility of studying the problem of open thin-walled bars 
subjected to torsion by using the finite element method. It is well known that in this 
case the bar cross-section warps and the state of loading is restrained torsion. For 
this reason, the force-displacement relation of the finite element is derived by using 
third degree shape functions and fifth degree shape functions. Generally, the 
higher order of shape functions yield to more accurate results.  
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1. INTRODUCTION 

A lot of structural members are made of thin walled open, closed or mixed bars. 
Even component substructures of a building can be considered thin-walled bars, as 
the central cores in the high-rise buildings. Their analysis involves a lot of complex 
problems than can be more easily and accurately solved by using the finite element 
method (MEF) 

In this method, the thin-walled bars are divided into finite elements, their state of 
loading being in the most cases combined bending and torsion. 

Their effects can be individually considered and than superposed. 

In the present paper there are presented two types of finite elements used in the 
analysis of thin-walled open bars considered to be subjected only to torsion that is 
in fact a restrained torsion, so that both effects of St. Venant torsion and warping 
must be determined. 

 

2. FINITE ELEMENT DERIVED BY USING THIRD DEGREE SHAPE 
FUNCTIONS 
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Generally, the substructures or structural elements modelled as thin walled open 
bars are acted by distributed twisting moments that occur due to the eccentricities 
of forces with respect to the shear centres and also by concentrated twisting 
moments and bi-moments. 
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The stress and strain state is evaluated by using the finite element method in the 
variant of Galerkin’s procedure, where, as shape functions (l’Hérmite functions) 
are adopted polynomials of different degrees. Generally, the polynomials of higher 
degree assure more accurate results. 

 
Fig. 1. Finite element DOF 

It is considered a finite element (Fig. 1) with two degrees of freedom at 
each node: the twisting angle  and its first order derivative, , that is the 
warping. 
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The corresponding nodal forces are represented by the total twisting 
moment  and by the bi-moment .  xM ωB

There are expressed the column vector of nodal displacements and the 
column vector of nodal forces: 
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The twisting angle )(xeϕ  which must satisfy the torsion governing equation 
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for a thin walled open member is approximated by a third degree polynomial: 
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or 

( ) αϕ ⋅= T
e Px                                                                                         (3) 

where 

[ ]321 xxxPT = ,         [ ]T3210 ααααα =                                        (4) 
By using the boundary conditions: 
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the vector of generalised co-ordinates { }α  can be expressed in terms of nodal 
displacements: 

edA ⋅=α                                                                                                                  (6) 

where 
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By substituting (6) in (3), the expression that states the relation between the 
displacement field and the nodal displacements is obtained: 

( ) e
T

e dNx ⋅=ϕ                                                                                                          (8) 

where  represents the shape function matrix: N

[ 4321 NNNNAPN TT =⋅= ]                                                                            (9) 

3

3

2

2

1
231
ll

xxN +−=   3

3

2

2

1
231
ll

xxN +−=                                                   (10) 

3

3

2

2

3
23
ll

xxN −=        2

32

4
ll

xxN +−=                                                         (11) 

By replacing the approximate adopted solution in the governing equation, the 
following residual results 
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that is used in Galerkin’s functional, which must be minimized. 
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The first two terms are integrated by parts 
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When )(xeϕ  in substituted in the previous relation by its expression (8), the finite 
element force-displacement relation is obtained 
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where 

ωEI
GI

k t=                                                                                                              (16) 

In relation (16) E  is the longitudinal modulus of elasticity for the material,  is 
the shear modulus of elasticity,  and  are geometrical properties of the bar 
section, that is the warping moment of inertia and the St. Venant torsional moment 
of inertia, respectively. 

G
ωI tI

The structural force-displacement relation is obtained by using the assembly 
procedure. In this process the boundary (support) conditions are imposed and 
finally, the nodal displacements, twisting moments and bi-moments at each mode 
can be evaluated. 
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3. FINITE ELEMENT DERIVED BY USING FIFTH DEGREE SHAPE 
FUNCTIONS 

In comparison with the previous discussed finite element, this one, pictured in Fig. 
2 is provided with three degrees of freedom at each node: the twisting angle ϕ  and 
its two derivatives ϕ′  and ϕ ′′ . 

In these circumstances the two vectors of nodal displacements and forces become: 
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In this case the displacement field if approximated by a fifth degree polynomial: 
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or shortly written: 

αϕ ⋅= T
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where 

[ ]54321 xxxxxPT = ,   [ ]T543210 ααααααα =               (19) 

By expressing the boundary conditions at the extremities of the finite element the 
vector of generalized coordinates { }α  is obtained according to relation (3), but in 
the new case 
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The new form of the shape function matrix becomes 
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The same procedure is followed as in the previous case and after expressing the 
residual )(xε  and Galerkin’s functional, the finite element force-displacement 
relation can be written as: 
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4. CONCLUSIONS  

The analysis of thin-walled bars subjected to torsion is a frequently met problem in 
the structural design. 

In order to eliminate the restrictions imposed in order to find the analytical 
solutions of the governing equation, the finite element method is approached. 

In this method there are several possibilities of adopting adequate finite elements 
and among them, two types of linear finite element are considered. 

Generally, the higher order of shape functions yield to more accurate results of the 
analysis. 
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