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Summary 
The evaluation of the damage caused by horizontal loads, such as seismic action, 
to existing bridges has received an important attention in recent years, because it 
is the first step towards reducing casualties and economic losses. In damage 
detection and evaluation, the application of simple and reliable models has been 
prioritized, because they are necessary in further multi-analyses required by Monte 
Carlo simulations. A simplified moment-curvature damage model, capable of 
evaluating the expected seismic behaviour of RC highway bridges is proposed in 
this paper. The damage evaluation model is based on the mechanical modification 
of the cross sectional inertia of the bridge piers. The model was validated using 
experimental results obtained at the JRC Ispra for the Warth Bridge of Austria and 
also FEM analyses performed by other authors for the same bridge.  

KEYWORDS: Damage estimation, continuum damage mechanics, damage 
constitutive model and moment curvature model. 

1. INTRODUCTION 

Nowadays, the evaluation of the damage caused by earthquakes in existing bridges 
received great attention. Numerous researches devoted to the structural damage 
evaluation have been performed, most of them considering the seismic behavior of 
buildings. The structural damage in the bridges can be characterized in two ways:  

1. In the first way, the structural damage is evaluated at given points of the 
structure by means of local constitutive models describing the damage 
accumulation caused by a local micro-structural damage [13, 19, 21, 28].  

2. In the second way, the local damage is used for the evaluation of global 
damage indices, which are scalars depending on some variables (or damage 
parameters) that characterize the dynamic response of the whole system [1, 
2, 24].  
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This paper proposes a damage evaluation based on structural analysis for RC 
highway bridges with simple pier bents. This typology of bridges was very used all 
over Europe during the 1960-1980 periods. The proposed structural model is based 
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on the hypothesis of the flexible pier-rigid deck behaviour of the structure 
subjected to seismic loads. A flexible pier-rigid deck simplified model was 
therefore developed, which could be extending after some modification to other 
typologies of bridges. This model has been chosen after studying the responses 
correlation between the proposed model and the real structure [9]. Accordingly, the 
overall seismic behaviour of this bridge typology is decisively influenced by the 
damage of the piers. Therefore, the study of the damage produced by horizontal 
loads has been centered on the piers of the bridge [9], while the structural study of 
the deck has been performed after the structural analysis of the piers, in an 
uncoupled way. Thus, the maximum damage of the piers under horizontal loads is 
the principal aim of the proposed structural damage evaluation procedure.  

A local damage index, which describes the state of the material at each point of the 
structure, is the starting point of the proposed method and is based on a constitutive 
damage law. Details on this constitutive law are given in the Annex of the paper. 
The global damage of each pier is obtained form the inertia reduction of the cross 
sections due to the material degradation. The validation of the proposed model was 
carried out by using the experimental tests on scale models of the piers of the 
Warth Bridge, Austria, carried out at the Joint Research Center of Ispra, Italy [25] 
and a FE model developed by R. Faria [8].  

The proposed model permits a simple, reliable and efficient structural analysis. 
Therefore, it is suitable for considering uncertainties in its parameters and for using 
Monte Carlo simulations with the aim of evaluating the seismic vulnerability of 
bridges.  

2. STRUCTURAL DESCRIPTION OF THE DYNAMIC MODEL 

Reinforced concrete highway bridges with simple pier bents have greater 
redundancy and higher strength in their longitudinal direction; therefore they will 
undergo greater damage when subjected to transversal seismic actions. The 
proposed model aims studying the bridge response to horizontal loads acting 
transversally to the direction of the bridge axis. Experimental studies confirm that 
the structural system can be modelled simply by piers loaded transversally to the 
axis of the bridge interconnected at the deck level by means of box girders [9, 23]. 
Due to the high stiffness of the bridge in longitudinal direction, the structural 
analysis in this direction is out of the purposes of this work, focusing on the 
structural study of the pier in transversal direction.   
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The model has continuous elements with distributed mass for the piers and 
concentrated mass for the girders. The motion of the np piers in transversal 
direction to the bridge axis is partially restricted by the adjacent girders that are 
supported by laminated neoprene bearings. Thus, the displacement of piers causes 
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the distortion of the bearings and the consequent rotation of the adjacent girders. 
The simplified model shown in Figure 1 is based on the following general 
hypotheses: 

1. The piers are continuous elements with distributed mass and infinite 
axial stiffness. 

2. The girders are perfectly stiff elements concentrating the mass at the 
top of the piers. 

3. The bearings of the girders are equivalent short elements that work to 
shear, having circular cross section and real dimensions. 

4. The soil-structure interaction effect on piers and abutments is 
considered by means of linear springs that represent the rotational 
stiffness of the soil. 

5. The abutments are perfectly stiff.  

Accordingly, the model has as many degrees of freedom as transversal 
displacements at the top of the piers, that is, np degrees of freedom.  

In following sections, the traverse stiffness of an isolated pier under non lineal 
damage effects produced by a horizontal load applied at the deck level will be 
studied.  
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Figure 1. Model for the seismic analysis of the bridge. 
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Figure 2. Transversal displacements of pier I considering the soil effect. 

Transversal behaviour of a single pier 

According to the general hypotheses and to Figure 2, the maximum displacement at 
the top of a pier is 
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is the elastic displacement produced by external actions [9]. In equations (2) and 
(3), is the rotation due to the soil-structure interaction effect,  is the 
maximum bending moment at the base of the pier,  is the equivalent stiffness of 
the soil, 

iθ max
iM

S
iK

( ) maxin
iq  and ( ) minin

iq

i
pL

 are the maximum and minimum inertial loads by 
unit length produced by the horizontal acceleration,  is the total inertial force 
due to the bridge deck and , and I

in
iF

icE i are the length, Young’s modulus and the 
inertia of the reinforced concrete cross section of the pier, respectively.  

For the maximum displacement of the pier (for x3 = 0), the bending moment 
equation is [9] 
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Substituting equations (2), (3) and (4) into Equation (1), the equivalent internal 
force at the top of the pier is obtained in function of the maximum displacement vi 
of the pier [9] 
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3. NON-LINEAR ANALYSIS OF THE PIER 

When the non-linear behavior of the structural materials is taken into account, the 
undamped equation of motion for each pier is written as 

  (6) 0in =∆−+ R
iiii FFam
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where  is the residual or out-of-balance force. This unbalanced force is due to 
the fact that the cross-section inertia and Young modulus are not constant during 
the non linear process and consequently the solution of Equation (6) should be 
obtained throughout an iterative process using a non-linear Newmark approach [3, 
7]. 

R
iF∆
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The changes of the pier stiffness and of the internal cross sectional force depend on 
the damage level reached at each point of the pier whose numerical evaluation is 
carried out by means of the continuum damage model (see the Annex). In this 
work, the damage model [19] is used to calculate the local damage index at each 
point of the structure. Then, by means of a numerical integration of the local 
damage indices on the cross-section at the base of the piers, the area and the inertia 
of the damaged cross section are obtained. Obviously, it is possible to obtain the 
damage evolution at each cross section of the pier, but the moment-curvature 
model requires the evaluation of damage only at the most loaded section (base 
cross section).  

To obtain the response and the maximum damage of all the bridge piers using the 
proposed model, Newmark’s non-linear algorithm, summarized in Box 1, is used to 
solve the equilibrium equation at each time of the process. In this analysis the 
balance force condition is achieved by eliminating  using a Newton-Raphson 
process. Indirectly, this process also eliminates the residual bending moment 

 included in the residual force array, which is the difference 
between the maximum elastic external moment, , and the pier internal strength 
capacity moment, . For each step of the non-linear analysis the properties of 
the system are updated, considering the local degradation of the material caused by 
the seismic action. 

R
iF∆

0

int0 MMM −=∆
M

intM

Solution of the dynamic equation of equilibrium 

The steps to define the damage in any pier of the bridge are described in boxes 1 
and 2. The maximum global damage index of the structure is obtained starting from 
the cross-sectional damage calculated at the base of the piers for transversal 
seismic actions. Box 1 shows the numerical procedure to solve the dynamic 
balance equation (6) using Newmark’s non-linear method. As shown previously, 
the type of bridge under study is modeled by means the piers that behaves like 
cantilever beams, for which the numerical integration of the damage on the cross 
section can be simplified, considering in the analysis only the cross-section at the 
pier base, that is, for 03 =x . Nevertheless, the procedure could be generalized 
including when necessary other cross-sections at levels  in the damage 
integration procedure.  
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1. Displacement and velocity prediction at “ t ”, starting from null initial 
conditions  

                                      

2. Computation of displacement increment  at instant t , starting from 
the linearized balance equation  

 

3. Displacement and velocity correction 

 

4. Loop over k bridge piers. The damage constitutive equation are computed at 
each pier k and at each cross section  (see next section and Box 2 for more details) 

 

4a. Computation of the generalized forces (predictor) and the elastic 
curvatures and axial strain at each cross section , using the 
displacement i  at the top of  pier k 

 

4b. Computation of the residual flexural moment    

 

4c. Balance equation verification on the clamped cross section 

 

4d. Computation of the incremental generalized strains and theirs current 
value 
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4e. Damaged inertia computation at the base cross section of pier 
(see Box 2) 

 

5. Back to point 4b followed by the minimization of generalized unbalanced force 
equation. 

6. Calculate the displacement at each point  of the pier and EXIT. 

 

 
7. Back to point 2 after the damage evaluation over all the piers and balance 

equation over the complete bridge  verification. 

8. New time increment and dynamic load application over all the bridge. Back to 
point 1. 

Box 1.  Solution of the non-linear equilibrium equation applied for the bridge using 
Newmark`s method. 

4. STUDY OF THE DAMAGED CROSS SECTION FOR SKEW 
BENDING  

Theoretical aspects 

In order to define the inertia and the bending moment of the damaged base cross 
section of a pier required by the solution of the non linear equation (6) −see Box 
1−, the isotropic damage model [19] has been applied (see Annex). In this section, 
the way of computing the local damage and its contribution to the cross sectional 
damage of a pier is described for Bernoulli beams subjected to skew bending. For 
this purpose, the damaged cantilever beam under skew bending of Figure 3 is 
considered. 
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Figure 3. Bridge pier represented as a cantilever Bernoulli beam.  

The external loads produce the following generalized forces in a cross section 
located at a distance   3x
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Considering the Bernoulli beam basic hypotheses, the following expressions for the 
strain and stress fields are obtained: 
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All the previous descriptions have been made for a linear elastic skew axial-
bending problem. Thus, the material has limitless capacity to resist the applied 
loads as expressed in Equation (9). This threshold is not possible to be reached for 
a real material, because its strength is limited to , as it can be seen in Equation 
(A.8) of the Annex. Therefore, the initial generalized internal forces  
produced by the external loads  is initially unbalanced with the generalized 
internals stresses 

maxc
)(ˆ 3

0 xσ

)( 3
0 xF

)(ˆ 3xσ , producing unbalanced residual generalized internal forces 
)(ˆ 3xσ∆ . These residual stresses should be zero due to the equilibrium condition 

and this state is reached by increasing the curvature )( 3xχ∆  and axial strain 
 of the beam. This procedure is iterative and starts with the linearization 

of the following unbalanced equilibrium equation at each cross section of the 
beam: 

)( 3xNε∆
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where the stress at each point of the cross section is obtained by using the 
constitutive damage model briefly described by the following equations: 
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. The values  and  are the maximum and current tension 
strength at each point of the solid,  is a parameter depending of the fracture 
energy and  is the damaged elastic module. 
Substituting this expression in Equation (10), the residual forces become 
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principal inertia axes at certain time instant of the process can change their position 
in a next instant due to the damage of the cross section of the beam; consequently 
the damaged inertia products related to the changed axes can be not equal to zero. 
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Numerical evaluation of the inertia of the damaged cross-section  

Due to the difficulties in performing a closed integration of the nonlinear equation 
(12) using the non-linear damage function defined by Equation (11), the inertia 
tensor and the area of the damaged cross section is calculated by means of a 
numerical algorithm (see Box 2). It is important to note that the selected integration 
algorithm requires to consider that one of the points at which the function to be 
integrated is located is on the border of the cross section, allowing to capture 
appropriately the evolution of the damage.  

When the cross section of the pier to be analyzed has a rectangular shape, the 
described procedure is applied directly. However, if the piers have a box shape, the 
inertia of the damaged cross section is obtained by dividing the element into four 
subsections, as shown in Figure 4. For each subsection, the damaged area, 

, is 3)x

  (13) 

and the distance between the neutral axes of each sub cross section and the global 
neutral axis of the complete cross section is calculated. The global inertia of the 
damaged cross section, , is then defined by  

  (14) 
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where  is the damaged inertia of subsection j, evaluated by means of Equation 

(14),  is the damaged area of the subsection j and  are the distances 
between the neutral axis of the subsections and the global neutral axis of the whole 
cross-section, which depend on the damage at the cross section. In the equations 
(13) and (14), the numerical integration has been carried out following its classical 
form 

)J(I

)J(A )J(
2X

ISSN 1582-3024

http://www.ce.tuiasi.ro/intersections

 Moment-curvature damage bridge piers subjected horizontal loads 

Article no.1, Intersections/Intersecţii, Vol.2, 2005, No.2, “Structural Engineering” 15 

Structural Engineering 

  (15) 

[ ]

[ ]

[ ]

[ ]
)J(1 1

321

321)J(3

)J(1 1

2
321

2
321)J(3

)J(1 1
321

321)J(3

)J(1 1
321321)J(3

),,(             

),,()(

),,(             

),,()(

),,(              

),,()(

),,(),,()(

)J(

)J(

)J(

)J(












⋅⋅⋅⋅=

⋅⋅=












⋅⋅⋅=

⋅=












⋅⋅⋅=

⋅=












⋅⋅=⋅=

∑∑

∫

∑∑

∫

∑∑

∫

∑∑∫

= =

= =

= =

= =

n

p

n

q
ijqpacob

A ijij

n

p

n

q
jqpacob

A jii

n

p

n

q
jqpacob

A ji

n

p

n

q
qpacobA

xfwwJ

dAxxxxxfxI

xfwwJ

dAxxxxfxI

xfwwJ

dAxxxxfxm

xfwwJdAxxxfxA

ξξξξ

ξξξ

ξξξ

ξξ

where  is the determinant of the gradient of the strains,  are 
the numerical weight coefficients, 

acobJ qp ww  and

21  and ξξ  are the isoparametric 
normalized coordinates and  is the order of the cuadrature of the 
numerical integration (see Zienkiewicz and Taylor [28]). Particularly, when 
damage occurs due to the external load, the position of the neutral axis of 
each subsection is modified according to the area of the subsection that is 
damaged. This modification must be reflected in the calculation of the 
distances to the global neutral axis of each subsection. Thus, to obtain each 

, it is necessary to know the coordinates  and  for each 
subsection, which are evaluated in a general form by means of the following 
equations: 
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Figure 4. Subsections of a box cross section. 

Linearization of the unbalanced equilibrium equation 

Linearizing Equation (10) and using the Newton-Raphson procedure, the cross 
section equilibrium equation is solved by successive iterations, increasing the 
curvature and axial strain of the pier in the corresponding cross section. For this 
purpose, the generalized strains (axial strain and bending moment) at increment 

)1( +n  and instant )( tt ∆+  is written by means of Taylor series, truncated at its 
first term, and then forced to zero 
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the Jacobian matrix.  

For each time increment in which the predictor moment produces an unbalanced 
load increment greater than an adopted tolerance (equations 17 and 18), the 
procedure considers an increment of the curvature in order to obtain a corrector of 
generalized stresses which permits to reach the equilibrium state. The used 
convergence criterion states that the stable response is obtained for the cross 
section if 
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where TOL is the tolerance adopted (TOL→ 0). 
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7. Damaged inertia computation at each  cross section of pier , using the 3x k
continuum damage model showed in Box  A-1 of the Annex:  
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8. Back to point 4 
9. EXIT 

Box 2. Algorithm for the cross sectional damage integration. 

5. NUMERICAL EXAMPLE FOR THE WARTH BRIDGE, AUSTRIA 

General description of Warth Bridge  

The Warth Bridge is located 63 km far from Vienna, Austria, was built 30 years 
ago and has two spans of the deck of 62.0 m and five of 67.0 m, with a total length 
of 459.0 m. The seven spans of the bridge give rise to six piers with heights of 31.0 
m, 39.0 m, 37.0 m, 36.0 m, 30.0 m and 17.6 m, as it can be observed in Figure 5. 

  

x3 

x2 

EE1 

P2 

P

31
.0

 m
 

62.0 
m

67.0 67.0 m 67.0 m 67.0 m67.0 m 62.0 m 

17
.5

 m
 

30
.0

 m
 

36
.0

 m
 

37
.0

 m
 

39
.0

m

P
P4 

P P

P i = pier 

E i = abutment

Figure 5. Elevation of the Warth Bridge, Austria.  

The geometrical and mechanical properties of the Warth bridge structure were 
obtained from the original design drawings [25]. Thus, the simple compression 
strength of the concrete is  MPa0.45=−

cuf MPa0.43=−
cuf  for for girders and 



piers. The weight density and Poisson modulus of the concrete are 
and ν = 0.2, respectively. In order to consider the weight of the 

non-structural components, the value of the weight density of the girders was 
increased to a value of . For the reinforcement bars, 

, ν = 0.3 and  were considered. The elastic 
modulus of the reinforced concrete, E

3kN/m0.24=γ

3kN/m5.78=γ

3kN/m0.28=γ

M100.2 5×=sE Pa
c, was obtained using the Mixing Theory [10, 

23] which allows calculating the properties of the elements composed of more than 
one material. 

[ )( 0C1()( c
p dkε −=),( p kd εσ =
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Quasi static pier response of the Warth Bridge  

In this work, the numerical simulation of the quasi static structural behavior of 
shorter pier of the Warth Bridge is given (identified as P6 in the Figure 5). This 
pier was studied experimentally in the JCR Ispra Laboratory, Italy [25] and 
numerically, using a finite elements approach, by Faria et al. [8]. The top of this 
5.75 m high pier has been subjected to a horizontal quasi static load. The seismic 
behavior of the pier has been evaluated using the described Bernoulli beam 
formulation extended to the non lineal case of Kachanov damage [18, 12]. That is, 
without using the finite element approach, it has been introduced within the frame 
of the classical theory of Bernoulli a non lineal continuum damage model. This 
formulation allows the evaluation of the structural behavior in the non lineal field 
with a very low computational cost and results comparable with those obtained 
experimentally and also by means of the finite elements approach are obtained. 
This model leads to a good, low computational cost, non linear solution required by 
the evaluation of the seismic vulnerability of the bridge, what implies multiple 
structural dynamic response calculations. The objective of the structural solution 
developed in this paper in not only a good prediction of the load-displacement 
relationship, but also a good evaluation of the cross-sectional damage.  

Properties of the materials  

The mechanical properties of the reinforced concrete bridge pier are calculated 
using the mixing theory [4, 23], which combines the mechanical behavior of the 
concrete and steel. The behavior of the concrete is represented by means of a 
damage model described in the Annex and the behavior of the steel is represented 
by means of a anisotropic perfect elasto-plastic model [20]. This combination of 
the concrete and steel behaviors given by the mixing theory, permits considering a 
plastic-degradable behavior without softening at each point of the composite 
material 

 ] [ ])()())( 0
p
ssscsscc kkd εεεσσ −++ :: C  (19) 



being: , the stresses in the composite material, in the damaged 
concrete and in the plastic steel, respectively.  are, respectively, the 
initial constitutive tensors in the concrete and steel while

)(,)( p
sc d εσσ, σ

sc )(and)( 00 CC

ck [ ]scc AdAdA += )(/)(  
and [ scs AdAA ]sk += )(/ are the relative areas corresponding to each material of 
the cross section of the pier. The characteristics of the used materials are given in 
Table 1.  
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Mechanical properties  Steel  Concrete  

Young’s modulus  GPaEs 00,200=  GPaEc 50,33=  

Compression strength at the elastic 
limit  

MPafsy 00,545=−  MPafcy 00,20=−  

Maximum compression strength  MPafsu 00,600=−  MPafcu 00,43=−  

Tension strength at the elastic limit  MPafsy 00,545=+  MPafcy 10,3=+  

Maximum tension strength  MPafsu 00,600=+  MPafcy 10,3=+  

Fracture energy  ( ) mMNG
sf /00,000.12=  ( ) mMNG

sf /20,1=  

Table1. Properties of the materials compounding the reinforced concrete. 

The initial values at the clamped cross section, corresponding to the initial, non 
damaged state, are the following: 
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Geometry and boundary conditions  

Figure 6 shows the geometric characteristics and boundary condition for pier P6.  

The pier is considered perfectly clamped to the foundation and the following 
sequence of loads is applied at its upper end:   



http://www.ce.tuiasi.ro/intersections

 Moment-curvature damage bridge piers subjected horizontal loads 

21 

Structural Engineering 

1. A compressional axial load of 3820,00 kN  
2. Once applied this load, three horizontal displacements are applied 

sequencially  
1) mum h 026,0026,0 +≤≤−  

2) mum h 055,0055,0 +≤≤−  

3) mum h 1,01,0 +≤≤−  

 
Figure 6. Geometry and reinforcement description of pier P6 belonging to Warth Bridge 

[25].  

These cycles of displacements introduce degradation on the clamped cross section 
of the pier and the numerical results obtained in this paper (Figure 7.b.) are 
compared with those obtained by Faria et al. [8] and in the JCR Ispra laboratory 
[25] (see Figure 7.a). 
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From the results obtained in the present work by using the damage model and the 
described structural approach, a good solution is obtained in many cases. In spite of 
the simplicity of the model, the results, in their general features, reach similar 
values than those obtained experimentally and numerically through FEM models 
with two internal damage variables (damage variable for compression and tension). 
Nevertheless, the most important aspect is the very low computational cost that 
encourages to its application in solving multiple analysis problems like Monte 
Carlo simulations [11]. The most important differences between the two graphics 
of Figure 7 can be observed in the unloading branch, because in this case the 
recovery of the material properties during the change of the sign of the load is 
evaluated using a simple constitutive model with a single damage index. In Figure 
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8 the top pier displacement is represented at the end of the load sequence 1 and 
then, in the same figure, the deformed pier is drown at the end of the last load 
sequence 3 In this last case the damaged cross section is localized near the 
foundation of the pier, while the rest of cross-sections of the pier turns to the its 
initial un-damaged state (rotation of rigid solid around the kneecap (Figure 8).  

 

3

1 2 321(b
)

(a) 

Figure 7. Load-displacement behavior in the pier for the load sequencies 1, 2 and 3.           
a) Experimental results [25] and numeric results [8]. b) Results obtained in the present 

work.  
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Figure 8. Displacement of the pier P6 at the end of the first load cycle and at the end of the 
last load cycle. 
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The degradation of the cross-section is shown in Figure 9. Figure 9a shows the 
moment-curvature evolution, and Figure 9b shows the evolution of the damage 
index in function of the curvature. It can be seen in this figure that the level of 
damage at the end of the process is near to one.  

 
Figure 9. a) Moment-curvature evolution. b) Evolution of the cross-sectional damage 

depending on the curvature level.  

6. SUMMARY AND CONCLUSIONS  

A model of evaluation of the damage caused by a horizontal action in the piers of 
RC bridges with single pier bents is developed in this work. For this structure, the 
proposed model considers only one degree of freedom for each pier, namely the 
transversal displacements at their top.  

The damage in a pier due to the seismic action is defined by using an isotropic 
damage model based on the Continuum Damage Mechanics. The damage is 
obtained in terms of the inertia of the damaged cross section at the base of each 
bridge pier is obtained. The proposed simplified model was verified using 
experimental and FEM results.  

The simplified non-linear analysis performed with the proposed model gives 
satisfactory results similar to those of the laboratory test and the FEM results. On 
the basis of these results it is concluded that the proposed model suitably describes 
the maximum damages of the piers of RC bridges, and that it is a low-cost 
computer tool, ideal for the multi-analysis processes required by the evaluation of 
seismic vulnerability. 

A future research objective is to develop a model for the complete bridge, using the 
developed pier model as an element of the structural model.  
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ANNEX: CONTINUUM CONSTITUTIVE DAMAGE LAW 

Introduction to isotropic damage model  

This annex contains a brief review of the isotropic continuum damage model at a 
point of a structure [19], which is used in the paper to formulate the damage of the 
cross section of a bridge pier. The damage at a point of a continuous solid is 
defined as the degradation of the stiffness and strength due to the decrease of the 
effective area [11]. The continuum theory of the damage was formulated by 
Kachanov [12] in the creep behavior context, but later on it has been reformulated 
and accepted as a valid alternative to simulate the rate independent behavior of 
several materials [4-6, 14-17, 26, 27].  

Formulation of isotropic damage model 

Degradation of the material properties happens due to the presence and growth of 
small cracks and voids inside the structure of the material. This phenomenon can 
be simulated by means of the continuum mechanics taking into account a scalar o 
tensorial internal damage variable. This internal variable of damage measures the 
level of degradation of the material in a point and its evaluation is based on the 
transformation of the real stresses in other effective stresses. For the simple 
isotropic damage used here, the relationship between the real and the effective 
stress is described using an isotropic damage variable d  

 
)1(0 d−

=
σσ  (A.1) 

In this equation, d is the internal variable of damage; σ  it is the Cauchy stress 
tensor and  is the effective stress tensor, evaluated in the “no-damaged” space. 
This internal variable represents the loss of stiffness level in a point of the material 
and its upper and lower limits are given by 

0σ

 10 ≤≤ d  (A.2) 

The upper limit (d=1) represents the maximum damage in a point and the lower 
limit (d=0) represents a non damaged point.  

Helmholtz free energy and constitutive equation  

The Helmholtz [18] free energy for the isotropic damage model is given by the 
expression  
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The elastic part of the free energy, in the small strain case, can be written in the 
following quadratic form: 

 εεε :: 00 2
1)( C=Ψ  (A.4) 

where  is the elastic undamaged constitutive tensor. The mechanical part of the 
dissipation, for uncoupled thermal problem, can be written by using the Clausius-
Plank inequality [18] 

0C

 0≥
∂
Ψ∂

−







∂
Ψ∂

−=Ξ d
d
&&ε

ε
σ :  (A.5) 

Appling the Coleman method (see Maugin [18]) to the dissipative power (Equation 
A.5) the following constitutive equation and dissipative inequality are obtained for 
each point of the material 

 ε
εε

σ :0
0 )1()1( Cdd −=

∂
Ψ∂

−=
∂
Ψ∂

=  (A.6) 

 0  (A.7) 0 ≥Ψ=Ξ d&

Fundamentals of the constitutive damage model  

Damage threshold criterion 

This approach defines the beginning of the non linear behavior in each point of the 
solid and it can be defined using the Plasticity Theory 

 ( ) ( ) ( ) ddcf ≡ { }≤−= qq with,0; 00 σσF  (A.8) 

where  )( 0σf

max == c

function of the stress tensor  and  is the 
strength threshold of damage. The initial value of damage is set up on 

 and represents the uniaxial strength at crushing state. The 
damage process begins when  is greater than . Equation (A.8) 
can be written in a more general form throughout the following equivalent 
expression: 

εσ :00 C=

maxmax σ=c

)(dc

max0 )( σdc
)( 0σf

is a scalar 

 ( ) ( )[ ] ( )[ ] { }ddcGfG ≡≤−= qq with,0; 00 σσF  (A.9) 

where  is a monotonic scalar function, invertible and positive with 
positives derivative. 

[ ]χG
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Evolution law for the internal damage variable  

The evolution law for the internal damage variable can be written in the following  
general from: 

 ( )
( )[ ]

( )[ ]
( )[ ]0

0

0

0;
σ
σ

σ
σ

f
fG

f
d

∂
∂

≡
∂
∂

= µµ &&& qF  (A.10) 

where µ  is a non negative scalar value named damage consistency parameter, 
whose definition is close to the plastic consistency parameter λ . As in the 
Plasticity Theory, the evaluation of this parameter is made using the Ilyushin [18] 

consistency condition. From this condition, and from the properties of [ ]χG , the 
following function is obtained: 
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 (A.11) 

and, from here, the permanency condition is deduced 
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 (A.12) 

Observing the rate of the threshold damage function ( )[ ] ( )[ ]00 / σσ fGtfG &=∂∂

d&
 

(Equation A.12) and comparing with the evolution law of the internal variable  
(Equation A.10), the following expression for the damage consistency parameter is 
obtained: 
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(A.13) 

Time integration over the rate of internal damage variable (Equation A.13) gives 
the following explicit expression for the damage evaluation in each point of the 
solid: 

 ( )[ ] ( )[ ]00 σσ fGdtfGdtdd
tt

=== ∫∫ &&  (A.14) 
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Substituting Equation (A.14) in (A.5), the following expression for the rate of the 
mechanical dissipation at each damaged point is established 
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The current value for the damage threshold c can be written, at time ts = , as 

 { }{ } tsfcc s ≤≤∀= 0)(max,max 0
max σ  (A.16) 

Particular expression used for the damage threshold criterion 

There are several ways to define the damage threshold criterion. In this work, the 
exponential of reference [19] for concrete structures is used. The scalar function 

[ ]χG  (Equation A.11) is here defined in function of the unit normalized 
dissipation variable κ as [15] 

 10)(1)()( 00
0 ≤












=≤⇒Ξ⋅











 −
+=Ξ⋅= ∫

t
m

Cf
m dt

g
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g
rK κκκ &&
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where  is the damage dissipation and dm
&

0Ψ=Ξ ∑∑ ==
=

33
)(

1I I1I Iσ σσr  a 

scalar function to define the sign of the stress state at each point and at each time 
instant of the damage process, being [ ]xxx +=  5,0  the McAully function. The 
variables  and  are the maximum values for the tension-compression 
dissipation at each point, respectively [15]. By this way, the damage dissipation 
will be always normalized to the maximum consumed energy during the 
mechanical process.  

fg cg

Using κ as an auxiliary variable, it is now possible to evaluate the damage function 
[ ]χG  in the following form [19]: 
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κ (A.18) 

but, under the damage condition ( ) ( )κcf ≡0σ . This equation can be also written 
as  
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where  is a parameter depending on the fracture energy 

dissipation [19]. The value 

( )( ) 12
0

0 5.0/
−





 −= σfgA f

fg ( ) max
0 c=σ0f  is obtained from the agreement with 

the first damage threshold, when the condition ( )[ ] [ ] 0max
0

0 =− cGfG σ  is reached 

and ( )[ ] [ ] 0max
0

0 ≡= cGf σG  shows the damage integration algorithm for each 
single point of the structure. 
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1. Compute the elastic prediction stress and the internal variable at current time 
“ t ”, and equilibrium iteration “ ”, ,  t∆+ i
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2. Damage threshold checking: 
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b. If:     0max >−ττ
                       Then start with the damage constitutive integration 

 

3. Integration of the damage constitutive equation, 
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4. Stress and tangent constitutive tensor actualization. 
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5. EXIT 
 

Box A1. Integration of the continuum damage equation at each structural point with 
exponential softening 
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Stress function particularization 

Simo and Ju stress function [26, 27] is used in the paper 

 ( ) εεεσ :: 000 )(2 C=Ψ== fτ  (A.19) 

Taking into account this function, parameter A used in Equation (A.18) can be 
written as 

 

( )( ) 2
1

1

2
0

0
−

=

σf

gA
f

 (A.20) 

where  represents the maximum of the fracture energy to be dissipated at each 

point of the solid and 
fg

( )0
0 σf  is the value given by the threshold equation for the 

first damage threshold. 

 

ISSN 1582-3024 Article no.1, Intersections/Intersecţii, Vol.2, 2005, No.2, “Structural Engineering” 



http://www.ce.tuiasi.ro/intersections

 Moment-curvature damage bridge piers subjected horizontal loads 

31 

Structural Engineering 

References 
[1] R. Aguiar and A. H. Barbat, “Daño sísmico en estructuras de hormigón armado”. 

Universidad Politécnica del Ejercito, Quito, Ecuador., 1997. 
[2] S. Arman and M. Grigoriu, Markov model for local and global damage indexes in seismic 

analysis, NCEER-94-0003, National Center for Earthquake Engineering Research, 1994. 
[3] A. H. Barbat, S. Oller, E. Oñate and A. Hanganu, “Viscous Damage Model for Timoshenko 

Beam Structures”. International Journal of Solids and Structures, Vol.34, No.30, pp. 3953-
3976. 1997. 

[4] E. Car, S. Oller and E. Oñate, “An anisotropic elastoplastic constitutive model for large 
strain analysis of fiber reinforced composite materials”. Computer Methods in Applied 
Mechanics and Engineering, Vol. 185, No. 2-4, 245-277, 2000.   

[5] J. Chaboche, “Continuum damage mechanics part I. General Concepts”. Journal of Applied 
Mechanics, 55, 59-64, 1988. 

[6] J. Chaboche, “Continuum damage mechanics part II. Damage Growth”. Journal of Applied 
Mechanics, 55, 65-72, 1988. 

[7] R. W. Clough and J. Penzien, Dynamics of Structures. McGraw-Hill, 1992. 
[8] R. Faria, N. Vila Pouca and R. Delgado, “Simulation of the cyclic behaviour of r/c 

rectangular hollow section bridge piers via a detailed numerical model”. Journal of 
Earthquake Engineering, Vol. 8, No. 5, 725-748, 2004. 

[9] C. Gómez-Soberón, S. Oller and A. Barbat, Seismic vulnerability of bridges using simple 
models”.  Monographs of Seismic Engineering, Monograph series in Earthquake 
Engineering, CIMNE IS-47, International Center of Numerical Methods in Engineering, 
Barcelona, Spain, 2002. 

[10] D. Hull, “Materiales compuestos”, Reverté Editorial, Spain, 1987. 
[11] J. E. Hurtado and A. H. Barbat, “Monte Carlo techniques in computational stochastic 

mechanics”. Archives of Computational Methods in Engineering, Vol. 5, No.1, 3-30, 1998.  
[12] L. M Kachanov,. “Time of rupture process under creep conditions”. Izvestia Akaademii 

Nauk; Otd Tech Nauk, 8 26-31, 1958, . 
[13] J. Lemaitre “A course on damage mechanics”, 2nd edition, Springer, 1992. 
[14] J. Lemaitre and J. L. Chaboche “Aspects phénoménologiques de la rupture par 

endommagement”. Journal of  Applied Mechanics, 2, 317-365, 1978. 
[15] J. Lubliner, J. Oliver, S. Oller and E. Oñate, “A plastic damage model for non linear analysis 

of concrete”. Int. Solids and Structures, Vol. 25, No. 3, pp. 299-326, 1989. 
[16] B. Luccioni and S. Oller, “A directional damage model”, Computer Methods in Applied 

Mechanics and Engineering. Vol. 192, No. 9-10, 1119-1145, 2003.  
[17] B. Luccioni, S. Oller and R. Danesi, “Coupled plastic-damaged model”. Computer Methods 

in Applied Mechanics and Engineering, Vol. 129, No. 1-2, 81-89, 1996.  
[18] G. A. Maugin, The thermomechanics of plasticity and fracture. Cambridge University Press, 

1992. 
[19] J. Oliver, M. Cervera, S. Oller and J. Lubliner, “Isotropic damage models and smeared crack 

analysis of concrete”. Second International Conference on Computer Aided Analysis and 
Design of Concrete Structures, 2, 945-958, Austria, 1990. 

[20] S. Oller, E. Car and J. Lubliner, “Definition of a general implicit orthotropic yield criterion”. 
Computer Methods in Applied Mechanics and Engineering, Vol. 192, No. 7-8, 895-912, 
2003. 

ISSN 1582-3024 Article no.1, Intersections/Intersecţii, Vol.2, 2005, No.2, “Structural Engineering” 

[21] S. Oller, B. Luccioni and A. Barbat, “Un método de evaluación del daño sísmico de 
estructuras de hormigón armado”. Revista Internacional de Métodos Numéricos para el 
Cálculo y Diseño en Ingeniería, 12(2), 215-238, 1996. 



ISSN 1582-3024

http://www.ce.tuiasi.ro/intersections

S. Oller, A.H. Barbat 

Article no.1, Intersections/Intersecţii, Vol.2, 2005, No.2, “Structural Engineering” 32 

Structural Engineering 

[22] S. Oller, A. H. Barbat, E. Oñate and A. Hanganu, “A damage model for the seismic analysis 
of buildings structures”. 10th World Conference on Earthquake Engineering. 2593-2598, 
1992. 

[23] S. Oller, E. Oñate, J. Miquel and S. Botello, “A plastic damage constitutive model for 
composite material”. International Journal of Solids and Structures, Vol.33, No.17, pp. 
2501-2518, 1996. 

[24] Y. J. Park and A. H. Ang, “Mechanistic seismic damage model for reinforced concrete”. 
Journal of Structural Engineering, 111(4), 722-739, 1985. 

[25] A. Pinto, J. Molina and G. Tsionis, Cyclic Test on a Large Scale Model of an Existing Short 
Bridge Pier (Warth Bridge-Pier A70). EUR Report, Joint Research Centre, ISIS, Ispra, Italy.  

[26] J. Simo and J. Ju, “Strain and stress based continuum damage models – I Formulation”. Int. 
J. Solids Structures, 23, 821-840, 1987. 

[27] J. Simo and J. Ju, “Strain and stress based continuum damage models – II Computational 
aspects”. Int. J. Solids Structures, 23, 841-869, 1987. 

[28] O. Zienkiewicz and R. Taylor, The Finite Element Method. Fourth edition, Volume 1 and 2, 
McGraw-Hill, 1988. 




