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Summary 

Composite materials have been used in structures for centuries. The available 
software enable us to model composite materials with specialized elements called 
layered elements, thus we can assign different properties and orientations for the 
various layers.  The failure mechanism discussed in this paper is the interface 
delamination at the contact surface between two materials. This has motivated 
considerable research on the failure at the interface.  

Interface delamination can be modelled by traditional fracture mechanics methods 
such as nodal release techniques. Alternatively, we can use techniques that will 
directly establish the fracture mechanism, by introducing a critical fracture energy 
that is also the energy required to break apart the interface surface, called 
cohesive zone model (CZM). In the second part of this paper will be discussed a 
more recent method to numerically model the delamination, namely discontinuous 
Galerkin model. This approach offer advantages over the more traditional 
approach that uses interface elements, as will be discussed in more detail. 
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1. INTRODUCTION 

A major failure mode in composite structures is debonding, either between two 
structural components, or between different layers within a structural part. 
Conventionally, special interface elements methods are placed a priori between the 
continuum finite elements to capture debonding at locations where they are 
expected to emerge. More recently, discretization methods have been proposed, 
which are more flexible than standard finite element methods, while having the 
potential to capture propagating debonding cracks in a robust, efficient and 
accurate manner, two of them being presented in the present paper, meaning 
cohesive zone model and discontinuous Galerkin method. 
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Composite materials are somewhat more difficult to model than an isotropic 
material such as iron or steel. Because each layer may have different orthotropic 
material properties, extra-care must be exercised when defining the properties and 
orientations of the various layers. Both fiber and particulate composite materials 
provide applications in materials science where the multiscale microstructure leads 
to the need for multiscale modeling. Using this approach, the various aspects of the 
entire structural problem are considered at different levels of observation, each of 
them characterized by a well-defined length scale. The different levels at which 
analyses are carried out, are connected either through length scale transitions, in 
which the structural behaviour at a given level is homogenised to arrive at 
mechanical properties at a next higher level [1], or through finite element analyses 
which are conducted at two levels simultaneously and in which are connected by 
matching the boundary conditions at both levels [2, 3].  

This paper will not focus on the methods for length scale transition or approaches 
for carrying out multi-level finite element analyses. Instead, we shall focus on so-
called meso-level approach, in which delamination is assumed to be the main 
degrading mechanism. For this purpose, the different levels of analysis – macro, 
meso and micro – are defined in the context of laminated composite structures. At 
the meso-level as well as at the micro-level, fracture along internal material 
boundaries, delamination and debonding, respectively, governs the failure 
behaviour. Most constitutive relations for such interfaces have in common that a 
so-called work of separation or fracture energy plays a central role. For this reason 
the subject of cohesive zone models, which are equipped with such a material 
parameter, is included in the discussion. 

At the meso-level, the plies are modelled as continua and can either be assumed to 
behave linearly elastically or can be degraded according to a damage law, and are 
discretised using standard finite elements – while the delamination is modelled in a 
discrete manner using special interface elements [4, 5]. Generalised plane strain 
elements are often used to model free-edge delamination [6], while stacks of solid 
or shell elements and interface elements are applicable to cases of delamination 
near holes or other cases where a three-dimensional modelling is necessary [3, 7]. 

2. COHESIVE ZONE MODEL 

Recently, the concept of cohesive zones has received revived interest and the 
cohesive zone modelling (CZM) approach has emerged as a powerful analytical 
tool for nonlinear fracture processes. This type of model has been widely used for 
studying the so-called quasi-brittle fracture process zone, which arises prior to 
complete fracture in, e.g., concrete materials and macromolecular based polymer 
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materials [8, 9]. Applications to other material systems such as adhesively bonded 
joints [10, 11], bimaterial interfaces [12], and the dynamic fracture of 
homogeneous materials [13] have also been very successful. Cohesive zone models 
have also been used to analyze composite delamination problems. Problems of 
delamination in the absence of large notches or holes have been studied [14, 15, 
16] and also, more pertinently to the present work, in the presence of a notch [17].  

CZM involves representing the adhesive bonded interface by a layer of special 
elements whose constitutive properties describe the traction (or cohesive stress) 
evolution as the interface is being opened [18]. Thus the core of CZM is the 
traction-separation law (also called cohesive law) that describes the evolution of 
interface stresses as functions of interface separations.  

2.1. Traction-separation law 

The cohesive traction is related to the cohesive separation of the surfaces by a 
traction-separation law (TS-law). In initially rigid models the cohesive zone is 
inactive as long as a certain stress level has not been reached. Barenblatt [19] was 
the first to propose a cohesive zone model for brittle fracture. Another popular 
model assumes that the cohesive stress remains constant up to a critical separation 
distance at which it drops down to zero. The second type of model assumes an 
initially elastic response of the cohesive zone. Most TS-laws of that type follow a 
similar scheme: the cohesive traction is zero at the beginning of the deformation. 
With increasing separation, the traction across the cohesive zone reaches 
maximum, then decreases and eventually vanishes allowing for complete 
decohesion. Crack growth under increasing external loading occurs when the crack 
surfaces separate gradually to the point where separation at the crack tip exceeds 
the critical value Δc and the cohesive traction vanishes [20]. 

In CZM, the potential crack propagation plane or the cleavage plane is idealised as 
a cohesive zone or cohesive interface and is assumed to support a nominal traction 
field T (force/unit reference area). This traction field, in general, has components 
both normal and tangential to the cohesive interface. The mechanical response of 
the cohesive interface is described through a constitutive law (in terms of a 
potential function) relating the traction field T with a separation parameter. The 
constitutive equations are such that, with increasing interfacial separation, the 
traction across the interface reaches a maximum, decreases and eventually vanishes 
so that complete decohesion occurs. It should be emphasized here that this 
constitutive description is a continuum one, and thus does not represent the 
interaction of two individual atoms across the interface. Also, it does not account 
for discrete dislocation effects. Consequently, the functional dependence of the 
traction field on interface separation is not uniquely determined [21]. 
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Typically the cohesive stress increases initially with the opening displacement, 
reaches a peak and then drops continuously to zero again at a certain critical 
displacement, as shown in Figure 1, and where the peak cohesive stresses represent 
the maximum load bearing capability of the adhesive [22].  

 

 
Figure 1. Traction-separation law in cohesive zone model 

The TS-law relates the cohesive normal traction N to the normal separation 
displacement Δ. In principle, TS-laws of any shape can be implemented with little 
modification. The reason for choosing a TS-law with straight segments is due to 
the computational costs. An exponential law would require updating the systems 
matrix continuously. The shape of the law consists of a rising, a constant and a 
falling segment and is determined by five parameters; the area under the curve 
defines the fracture energy: 

)1(50.0 21   cth    (1) 

where σth is the cohesive strength, Δc is the crack opening separation above which 
the cohesive interaction vanishes and δ1, δ2 are the shape parameters that define the 
corners of the trapezoid.  

2.2. Interface elements 

The interface fracture phenomena play an important role in a number of 
applications especially in laminated composites. When modelling interface fracture 
phenomena, the use of discrete approach is advocated to achieve a better 
representation of the entire fracture process. If failure takes place along well-
defined surfaces, a standard way to solve fracture problems with finite element 
methods consists of inserting interface elements (or cohesive layers) with zero 
thickness in the mesh at places where cracking is expected to occur [23, 24].  
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For interface elements, the interfacial separation is defined as the displacement 
jump, δ, i.e., the difference of the displacements of the adjacent interface surfaces: 

bottomtop uu      (2) 

Note that the definition of the separation is based on local element coordinate 
system, Figure 2. The normal of the interface is denoted as local direction n, and 
the local tangent direction is denoted as t. Thus: 

  nn      (3) 

  tt      (4) 

 
Figure 2. Interface elements 

An example where the potential of cohesive-zone models can be exploited fully 
using conventional discrete interface elements, which is an analysis of 
delamination in layered composite materials [6]. Since the propagation of 
delaminations is restricted to the interfaces between the plies, inserting interface 
elements at these locations permits an exact simulation of the failure mode [3].  

3. DISCONTINUOUS GALERKIN MODEL 

The discontinuous Galerkin (dG) method is a class of finite element methods, 
which uses discontinuous, piecewise polynomial spaces for the numerical solution 
and the test functions. This method has classically been employed for the 
computation of fluid flow, but more recently, attention has been given to their 
potential use in solid mechanics, and especially for problems involving cracks [25], 
or for constitutive models that incorporate spatial gradients [26]. 

According to Stan [27] the main advantages of the discontinuous Galerkin finite 
element methods are:  

• the shape functions are discontinuous along the element edges;  

• the dG methods are locally mass conservative at the element level;  
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• each element can be thought of as a separate entity  (the element topology, the 
degree of approximation and even the choice of governing equations can vary 
from element to element and in time over the course of calculation without 
loss of rigor in the method). 

Consider a body that occupies a bounded Lipschitz domain Ω in 3 (Figure 3). 
The continuum problem is governed by the following equations stated in terms of 
the Cauchy stress: 

b   in Ω     (5) 

Ngn   on N      (6) 

Dgu  on D      (7) 

where b is the body force, n - the unit vector outward normal to the boundary   ,  
gD and  gN are the boundary conditions applied on the displacement DD   

and traction NN   parts of the boundary, respectively. 

 
Figure 3. Body with a discontinuity 

Let  Th   be a shape-regular partition of Ω, where T are finite elements. Let e 

denote an arbitrary element edge, and  eh   be the set of all edges. Each 

element boundary e is shared by two elements T+ and T- such that   TTe , 
with n+ being the unit normal vector to T+ (Figure 4). 

We decompose εh into three disjoints subsets such that NDIh   , where 

εI is the set of all internal edges,  hI TTe  :\ ; εD is the set of all 

element edges on the Dirichlet part of the boundary 
 hDDD TTe  :, ; εN is the set of all element edges on the 

Neuman part of the boundary  hNNN TTe  :, . 
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Figure 4. Discontinuous Galerkin mesh 

The following approximation space is introduced: 

 h
k

Th TTPLV  ),(:)(2     (8) 

 where Pk(T) is the space of polynomials of degree at most k supported on T .  

To facilitate construction of a numerical scheme with high order accuracy in the 
vicinity of discontinuities, we require all discontinuities to lay on the element 
boundaries.  

The stabilized discontinuous Galerkin weak formulation results in the following 
form: Find hh Vu   such that: 
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and 

hDDhhNNhThh gngbl   ),)((),(),()(    (11) 

In the above equations β is a positive penalty parameter assumed constant across 
Ωh, and he denotes the characteristic length of the mesh. The parameter α is either 
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+1, or -1, corresponding to non-symmetric and symmetric interior penalty methods, 
respectively. 

4. CONCLUSIONS 

It is worth remarking that, in this paper, a powerful analytical tool for composite 
delamination was used, namely the cohesive zone model. Normally, delamination 
is defined as the separation of two plies of a laminated composite, but also 
delamination can occur exactly at the interface between two phases. Fracture or 
delamination along the interfaces plays a major role in limiting the toughness and 
the ductility of the multi-phase materials, such as composites or laminated 
composite structures. In this concern the interface surfaces of the materials can be 
modelled using a special set of interface materials or contact elements, and CZM 
can be used to characterize the constitutive behaviour of the interface. 

Another approach, which offers advantages over the more traditional approaches, is 
the discontinuous Galerkin method that can handle cohesive cracks very naturally. 
Some of their main advantages are including good stability and consistency, and 
absence of traction oscillations and spurious reflections. One of the downsides of 
the dG methods is the computational cost since a loop over the boundaries in the 
mesh in necessary. Also, an important yet unresolved problem is the automatic 
selection of the stabilization parameter. However, the presented dG finite element 
formulation with cohesive models can simplify the computational modeling of 
failure along well-defined surface. 
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