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Summary 

This paper presents the specifics of applying the First Order Shear Deformation 

Theory (FSDT) for determining the bending response parameters of sandwich 

plates. The classical lamination theory (CLT) is used to establish the stiffness 

matrices of the element, the significance and importance of the shear correction 

factor, and finally, different methods (analytical and numerical) for implementing 

the theory are presented. 

KEYWORDS: sandwich plates, first order shear deformation theory, bending 

1. INTRODUCTION 

Sandwich plates are frequently used because of their ability to provide high 

bending stiffness while being light weight. A sandwich panel can be assimilated 

with a I-beam in which the faces act as the flanges who carry the normal stresses 

caused by bending moments and the core as the web supporting the shear stresses 

caused by transverse forces. However, typically the core is made of materials with 

reduced stiffness, which results in the appearance of shear effects that need to be 

accounted for. 

The first order shear deformation theory (FSDT), commonly referred to as the 

Mindlin-Reissner theory, is the most basic tool available to take into account such 

effects. The theory is based on the following displacement field: 

 ),(),,( yxzzyxu x  

 ),(),,( yxzzyxv y   (1) 

 ),(),,( 0 yxwzyxw   

where  and  denote rotations about the x and y axes, respectively. The 

rotations  and are no longer explicit functions of the derivatives of the 

deflection , as for the classical plate theory. 

From the displacement field (1), the components of the linear strains are (fig. 1): 
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Figure 1. Undeformed and deformed geometries of an edge plate:  

a) undeformed; b) Kirchoff plate theory; c) Mindlin-Reissner plate theory 

The kinematics of FSDT assume a global transverse shear strain considered 

constant on the plate thickness. To compensate for this assumption, a shear 

correction factor is required, which appears as a coefficient in the expression for 

the transverse shear stress resultant. The accuracy with which this factor is 

computed is paramount for the validation of the results. 

2. ANALYSIS OF SANDWICH PLATES USING FSDT 

2.1. Laminate stiffness’s 

In order to establish the constitutive equations for sandwich plates and determine 

the necessary parameters to accurately estimate the bending behaviour of said 

plates, it is necessary to employ the Classical Lamination Theory (CLT) to 

determine the stiffness matrices (extensional stiffness matrix – [A], coupling 



The First Order Shear Deformation Theory for Sandwich Plates  

Article No. 4, Intersections/Intersecţii, Vol. 13 (New Series), 2016, No. 1 39 ISSN 1582-3024 

http://www.intersections.ro  

 

matrix [B] and bending stiffness matrix – [D]). For simplicity, this papers strictly 

refers to rectangular isotropic sandwich plates with equal face sheets, hence the [B] 

matrix will be null. According to [3], a sandwich plate is isotropic when the core is 

made of an isotropic (such as foam) or transversely isotropic (such as honeycomb) 

material and the top and bottom facesheets are made of identical isotropic materials 

or are identical quasi-isotropic laminates. 

There are two ways to approach the problem: 

1) If the core is made of a material with a much lower modulus of 

elasticity than that of the faces, then its influence on the overall 

stiffness of the plate can be completely neglected, and the method 

presented in 2.1.1 can be used; 

2) If the core material and that of the faces both have comparable moduli 

of elasticity, then the method presented in 2.1.2 must be used. 

2.1.1. The stiffness matrices for the case when Ec << Ef 

First, the face stiffness’s are determined as follows [3]: 
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 (3) 

where, according to Figure 2: 

- d represents the distance from the centre of the plate to the mid-plane of 

the faces; 

- hf and hc are the thickness of the faces and of the core; 

- Ef  and νf are the Young modulus and Poisson ratio for the facesheets 

material. 

Next, the stiffness matrices for the whole panel can be determined [3]: 
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2.1.2. The stiffness matrices for the case when Ec is comparable to Ef 

In this situation, the components of the stiffness matrices can be determined as 

follows: 
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 ccff hGhGAA  25544  (6) 

where are terms of the plane stress-reduced elastic coefficient matrices for 

the materials of the core and faces of the plate and can be determined like so: 
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with E, G and ν - the Young modulus, shear modulus and Poisson’s ratio of the 

materials of the core (c index) and faces (f index) of the sandwich panel. 

 

Figure 2. Distances required for determining the stiffness matrices 

2.2. The shear correction factor 

Since the transverse shear strains are represented as constant through the laminate 

thickness, consequently, the transverse shear stresses will also be constant. It is 

well known that the transverse shear stresses vary parabolically. The discrepancy 

between the actual stress state and the constant stress state predicted by FSDT is 

corrected by multiplying the transverse shear forces with a coefficient Ks, called 

shear correction factor. 

For elements with homogenous cross-sections, the value for the shear correction 

factor, accepted in the literature [6], is 5/6. However, for composite laminates, this 

value is no longer suitable. In [4, 8], the authors present a series of methods to 

determine this factor. 
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The most widely used method for computing the shear correction factor is the so 

called energy equivalence method. The strain energy due to transverse shear 

stresses predicted by FSDT is equalled with that from the three-dimensional 

elasticity theory. 

For example, for a symmetric sandwich beam, the shear correction factor can be 

determined like so: 
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where: 
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In [4], Birmann and Bert concludes that this method is not reliable if the modular 

ratio for the materials of the faces and core is extremely high, in which case the 

values predicted for the shear correction factor are close to zero. This statement has 

also been proven in [9], where the authors studied the bending behaviour of a 

sandwich plate with the core made of extruded polystyrene and aluminium faces. 

Because of the low values of Ks, the plate deflections predicted by FSDT were 

several orders of magnitude greater than those of CLPT. 

Birmann and Bert suggests that for the design of sandwich plates, the shear 

correction value should be taken equal to unity. 

2.3. Bending analysis of sandwich plates using FSDT 

2.3.1. The governing differential equations 

The governing differential equations for a laminated composite plate subjected to a 

transverse load (Figure 3) are [7]: 

 

0)( 55

2

66122

2

662

2

11 



























x

w
AK

yx
DD

y
D

x
D xs

yxx 


 



Radu Chiriac and Mihai Vrabie 

Article No. 4, Intersections/Intersecţii, Vol. 13 (New Series), 2016, No. 1 42 ISSN 1582-3024 

http://www.intersections.ro 

 

 

0)( 442

2

222

2

66

2

6612 




























y

w
AK

y
D

y
D

yx
DD ys

yyx 


 (10) 
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Figure 3. Geometry and loading of a sandwich plate: a) general polygonal shape; b) plate 

cross section 

The inclusion of transverse shear deformation effects results in three coupled 

partial differential equations with three unknowns,  and w, as opposed to 

having one partial differential equation with one unknown, w, in classical plate 

theory. 

The plate constitutive equations for the classical or first-order shear deformation 

theories are: 
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where the laminate stiffness’s Dij and Aij are defined in [1, 2, 5, 7] for symmetric 

laminates with multiple isotropic layers. 
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2.3.2. The Navier Solution for FSDT 

The boundary conditions for a simply supported plate (Figure 4), in FSDT, are: 

- for the edge parallel to the y-axis: 000  xy Mwv   

- for the edge parallel to the x-axis: 0 0 0x yu w M     

 

Figure 4. Boundary conditions on a simply supported plate for the Mindlin theory 

The boundary conditions are satisfied by the following expressions: 
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where ,  and m, n are the steps of the series. 

The transverse load is also transcribed in double Fourier series: 
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The coefficients mnW , mnX  and mnY  have the following expressions: 
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Once the displacements and rotations are determined, the bending and twisting 

moments can be computed: 
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and the stresses: 
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2.3.3. Numerical methods 

2.3.3.1. Finite difference method 

The finite difference method can easily be used to determine the bending behaviour 

of isotropic sandwich plates for the first order shear deformation theory. 

The first step consists in determining the moment sum and deflections for an 

equivalent homogenous plate, composed of the two face sheets glued together, 

using the well-known Poisson equations of the Classical Plate Theory: 
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After which the deflections of the real sandwich plate are computed using the 

relationship that connects the two theories [5]: 

 
)2( ffccs

K
K

fc

M

hGhGK

M
w

DD

D
w







 (22) 

where: 

- 2 - the Laplacian operator, approximated by the finite difference method; 

- q is the transverse load; 

- “M” and “K” superscripts denote quantities of the Kirchoff and Mindlin plate 

theories; 

- D is the bending stiffness of the equivalent homogenous plate: 
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- M
K
 is the moment sum for the homogenous equivalent Kirchoff plate; 

- Dc and Df are the bending stiffnesses of the core and faces for the real plate; 

- Gc,Gf  - the shear moduli of the materials for the core and faces; 

- hc and hf  - the thickness of the core and that of the faces; 

- Ks – the shear correction factor, as discussed in section 2.2. 

 

The stiffnesses Dc and Df are: 
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2.3.3.2. Finite elements method 

Almost all commercial finite element analysis codes (Abaqus, Ansys) use Mindlin 

type plate elements. 

For example, the most common type of element used by Ansys to model layered 

plates is SHELL181. The following is from the Ansys Workbench Help [10]: 

“SHELL181 is a four-node element with six degrees of freedom at each node: 

translations in the x, y and z directions, and rotations about the x, y and z-axes. 

SHELL181 can be used for layered applications for modelling composite shells or 

sandwich construction. The accuracy in modelling composite shells is governed by 

the first-order shear-deformation theory.(usually referred to as Mindlin-Reissner 

theory). 

Transverse shear stiffness of the shell section is estimated by an energy 

equivalence procedure. The accuracy of this calculation may be adversely affected 

if the ratio of material stiffness’s (Young’s moduli) between adjacent layers is very 

high.” 

3. CONCLUSIONS 

The first-order shear-deformation theory is widely used for the bending 

analysis of sandwich plates. It relaxes the normal segment hypothesis and 

takes into account a constant shear strain on the plate thickness. In order to 

correct the discrepancy between this constant distribution and the real 

parabolic distribution, the theory uses a shear correction factor. As has been 

shown, the accuracy with which this factor is computed is critical for the 

validity of the results. The Mindlin plate model is implemented in all major 

finite element analysis software and the shear correction factors are 

determined using the energy equivalence method.  
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